针对贝叶斯网络结构学习方法难以兼顾高准确率和高效率的问题,提出了一种基于Markov Chain Monte Carlo(MCMC)方法的贝叶斯网络结构学习方法的改进。改进包括:使用依赖关系分析,利用统计学的方法对采样空间进行大幅缩减,能够在精确控制准确度的情况下大幅提高时间效率;结合先验知识,从理论角度将先验知识融入评分中得到完全服从后验分布的结果;搜索最优子结构,对于特定的一些结构搜索最优子结构而不是采用贪心的方法,提高了贝叶斯网络结构学习的准确率。通过理论分析可以证明时间复杂度得到了大幅的降低。并且可以在牺牲可预知的准确率的情况下,将指数时间复杂度降为线性时间。大量的数据实验表明,经改进后的方法在时间和准确性上都具有良好的表现。
1
A history of Bayesian neural networks DEEP LEARNING LIMITATIONS OF DEEP LEARNING WHAT DO I MEAN BY BEING BAYESIAN ? BAYES RULE
2022-03-16 20:48:42 4.45MB 机器学习 贝叶斯网络
1
matlab官方贝叶斯网络工具箱 具体说明请上官方网站 官方主页:http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html 官方下载:http://www.cs.ubc.ca/~murphyk/Software/BNT/FullBNT-1.0.4.zip 原文链接:http://hi.baidu.com/zgyz/blog/item/2d3627f415c7fbe77709d763.html 贝叶斯网络:http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html 语音工具箱:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
2022-03-14 11:10:16 1.93MB matlab工具箱
1
根据3阶段方法,开发的软件,能够建立贝叶斯网络
2022-03-13 16:27:02 3.71MB 贝叶斯
1
基于朴素贝叶斯分类器的文本分类算法(C语言)
2022-03-13 11:06:41 39KB 基于 朴素 贝叶斯 分类
1
介绍贝叶斯网络和贝叶斯分类器的ppt
2022-03-12 10:36:47 1.4MB 分类器 贝叶斯网络
1
Spring-Boot-Neo4j-Movies Spring-Boot集成Neo4j结合Spark的朴素贝叶斯分类器实现基于电影知识图谱的智能问答系统 博客地址: 项目博客地址: 升级Spark依赖,由原来的2.3升级到2.4,GitHub官方提醒> = 1.0.0,<= 2.3.2之间的版本容易受到攻击 spark2.4 == >scala2.11 and scala2.12 <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> org.apache.spark spark-core_2.12 2.4.0 <
2022-03-10 19:18:34 1.36MB 附件源码 文章源码
1
K2算法是近二十年来贝叶斯网络中最著名的基于分数的算法。 具体来说,它以 DAG 的形式有效地恢复了底层分布。 详情请参考Cooper发表的论文[1] 请从“ControlCentor.m”开始,这里有一个简单的例子来理解如何使用我们的代码。 如果有任何问题,请告诉我,我会尽快帮助您。 我用mex编程重写了K2,如果你知道怎么编译,请试试K2.c,因为这段代码可以处理1000个变量的变量,效率很高。 它在 32 位和 64 位 linux 下进行了测试。 [1] G. Cooper 和 E. Herskovitz,从数据中归纳概率网络的贝叶斯方法,机器学习9 (1992), 330–347。 如果您使用此代码,请引用我们的论文: Bielza, C., Li, G. & Larrañaga, P. (2011)。 贝叶斯网络的多维分类。 国际近似推理杂志,第52卷,第705-7
2022-03-08 10:49:43 9KB matlab
1
垃圾邮件过滤器 基于贝叶斯网络的垃圾邮件过滤器 为垃圾邮件检测实现朴素贝叶斯分类器 [60] 朴素贝叶斯是一种简单有效的机器学习方法,用于解决各种问题,包括垃圾邮件检测的应用。 您将实现一个朴素贝叶斯分类器,将电子邮件消息分类为垃圾邮件(即垃圾邮件)或火腿(即合法邮件)。 本次作业的训练和测试数据集可以在 HW5_code.zip 中找到。训练集由不同目录中的 800 条垃圾邮件和 800 条火腿消息组成,测试集包含 400 条垃圾邮件和 400 条火腿消息。 两组都具有完整的原始标题信息。 每封电子邮件都是一个单独的文本文件。 数据组织如下: /train/ham/ /train/spam/ /test/ham/ /test/spam/ 提供的代码读取训练集中的所有消息,提取每个单词,删除标点符号和数字,构建所有单词的字典,并存储单词计数和单词概率。 此代码在框架代码文件 NBSp
2022-03-07 13:49:18 5KB Java
1
贝叶斯动态模型及其预测。 介绍贝叶斯的一些概念和用法。
2022-03-02 09:33:03 3.53MB 贝叶斯 概率 贝叶斯网络
1