半监督学习pdf讲义超详细
2022-02-14 18:26:29 6.73MB 半监督学习
1
在微博谣言检测中,对微博谣言进行正确标注需要耗费大量的人力和时间,同时数据类别的不平衡也影响了微博谣言的正确识别。为了解决该问题,提出一种基于Co-Forest算法针对不平衡数据集的改进方法,利用SMOTE算法和分层抽样平衡数据分布,并通过代价敏感的加权投票法来提高对未标记样本预测的正确率。该方法只需要对少量训练数据实例进行谣言类别标注即可有效检测谣言。10组UCI测试数据和2组微博谣言的实证实验证明了算法有效性。
1
利用未标记示例的主流学习技术主要有三大类[Zhou06],即半监督学习(semi-supervised learning)、直推学习(transductive learning)和主动学习(active learning)
2022-01-27 19:18:02 400KB 半监督学习 协同训练
1
自监督学习(Self-supervised learning)最近获得了很多关注,因为其可以避免对数据集进行大量的标签标注。它可以把自己定义的伪标签当作训练的信号,然后把学习到的表示(representation)用作下游任务里。最近,对比学习被当作自监督学习中一个非常重要的一部分,被广泛运用在计算机视觉、自然语言处理等领域。它的目标是:将一个样本的不同的、增强过的新样本们在嵌入空间中尽可能地近,然后让不同的样本之间尽可能地远。这篇论文提供了一个非常详尽的对比自监督学习综述。
2022-01-23 22:33:07 5.72MB 对比学习
1
Qoala-T 用于FreeSurfer分段MRI数据质量控制的监督学习工具 版本1.2>预测模型已于2019年1月14日更新; Github页面于2021年3月16日更新Qoala-T由和在开发和创建。 关于 Qoala-T是一种有监督的学习工具,可评估T1成像扫描的手动质量控制及其在FreeSurfer中处理的自动神经解剖标记的准确性。 它特别适用于开发数据集。 该软件包包含Klapwijk等人(2019)中所述的数据和R代码,请参阅 。 我们内部开发的手动质量控制程序的协议可以在找到。 我们还开发了一个使用R Shiny的应用程序,通过该应用程序可以在不安装R的情况下运行Qoala-T模型,请参阅(可以在找到本地运行的源代码)。 运行Qoala-T 为了能够运行Qoala-T模型,应在FreeSurfer中处理T1 MRI图像。 当前版本中使用的模型是针对FreeSurfer
2022-01-08 14:00:52 4.46MB machine-learning quality-control mri freesurfer
1
随着深度学习的发展,研究人员开始探索将深度学习应用于行人重识别任务并提出了大量方法,随之也迎来了新的挑战。为系统地了解这一领域的研究现状和发展趋势,首先对行人重识别任务以及存在的问题进行简单介绍;其次,根据训练方式的不同,分别探讨监督学习、半监督学习/弱监督学习以及无监督学习上行人重识别任务的研究进展,并根据现有研究热度介绍生成对抗网络和注意力机制在行人重识别上的应用;之后,列举了该领域中常用的经典数据集,并对比了深度模型在这些经典数据集(Market-1501、CUHK03等)上的表现;最后,对行人重识别领域的未来方向进行了展望。
2022-01-07 15:26:39 1.8MB 行人重识别 监督学习 半监督学习
1
我们世界的许多方面都可以用相互作用的部分组成的系统来理解,从物理中的多对象系统到复杂的社会动力学。让模型了解这种组合结构对于泛化和数据高效学习非常重要。这就产生了一类称为图神经网络(GNNs)的模型。
2022-01-05 23:47:51 21.31MB 图神经网络无监督学习
1
混合搭配 这是MixMatch的非官方PyTorch实现。 Tensorflow的官方实现在。 现在只有在CIFAR-10上的实验可用。 该存储库认真执行了官方实施的重要细节,以重现结果。 要求 Python 3.6+ PyTorch 1.0 torchvision 0.2.2(旧版本与此代码不兼容) 张量板 进步 matplotlib 麻木 用法 火车 通过CIFAR-10数据集的250个标记数据训练模型: python train.py --gpu --n-labeled 250 --out cifar10@250 通过CIFAR-10数据集的4000个标记数据训练模型: python train.py --gpu --n-labeled 4000 --out cifar10@4000 监控培训进度 tensorboard.sh --
1
针对机器学习中训练样本和测试样本概率分布不一致的问题,提出了一种基于dropout正则化的半监督域自适应方法来实现将神经网络的特征表示从标签丰富的源域转移到无标签的目标域。此方法从半监督学习的角度出发,在源域数据中添加少量带标签的目标域数据,使得神经网络在学习到源域数据特征分布的同时也能学习到目标域数据的特征分布。由于有了先验知识的指导,即使没有丰富的标签信息,神经网络依然可以很好地拟合目标域数据。实验结果表明,此算法在几种典型的数字数据集SVHN、MNIST和USPS的域自适应任务上的性能优于现有的其他算法,并且在涵盖广泛自然类别的真实数据集CIFAR-10和STL-10的域自适应任务上有较好的鲁棒性。
2021-12-30 14:37:54 1.25MB 域自适应方法 正则化 半监督学习
1
UCI 机器学习数据集合中的经典二分类数据集,包括 Iris、Hert Dieses、German Credit 等经典二分类问题测试数据集。
1