智能计量插座-HLW8012设计资料REV30是关于一款基于HLW8012芯片的智能插座的设计文档。HLW8012是一款高效、低功耗的三相电能计量集成电路,广泛应用于电力监测、智能插座、智能家居等领域。这款芯片集成了电流、电压测量以及功率计算功能,能够精确地测量用电设备的能耗情况。 在智能计量插座的设计中,HLW8012起着核心作用。它通过内部的模数转换器(ADC)对输入的电压和电流信号进行采样,然后根据采样值计算出功率、电能等参数。这些参数可以通过通信接口如UART或SPI输出到微控制器,以便于实时监控和管理电力消耗。 设计资料REV30通常包含了以下内容: 1. **技术规格**:详细列出HLW8012芯片的技术参数,如工作电压范围、电流测量范围、精度等级、通信接口类型等。 2. **电路原理图**:展示了如何将HLW8012集成到智能插座的电路中,包括电压和电流传感器的连接方式、外围电路设计,以及与微控制器的接口连接。 3. **应用示例**:提供具体的电路布局和PCB设计实例,指导工程师进行硬件设计。 4. **软件开发**:可能包含固件代码示例,展示如何读取和处理HLW8012输出的数据,以及如何实现远程通信功能。 5. **测试方法**:指导如何验证设计的正确性和性能,包括校准步骤和性能指标的测量。 6. **安全与合规**:解释如何满足电气安全标准,如IEC 61000系列、UL标准等,确保产品符合全球各地的法规要求。 7. **故障排除指南**:列出可能出现的问题和解决办法,帮助工程师快速定位和修复问题。 8. **设计变更记录**:REV30表示这是设计的第30个修订版本,通常会记录自上一版本以来所做的改动和改进。 通过学习和理解这些设计资料,工程师可以有效地开发出基于HLW8012的智能计量插座,实现对电器能耗的精确监测和控制,为智能家居系统提供关键的能源管理数据,有助于节能和优化用电行为。同时,该资料也适用于教学和研究,帮助学生和研究人员了解智能电表和能源管理系统的工作原理。
2024-09-12 22:43:59 16.36MB HLW8012
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-11 12:52:10 3.53MB matlab
1
这篇毕业设计项目主要聚焦于利用Python编程语言和人工智能技术实现一个智能联系人管理系统。系统旨在高效、便捷地管理和检索个人或组织的联系人信息,同时可能融入了学习和预测功能,以便根据用户行为进行智能化推荐。 1. **Python编程语言**:Python是一种高级编程语言,因其简洁易读的语法而被广泛应用于各种领域,包括Web开发、数据分析、机器学习等。在这个项目中,Python作为主要的开发工具,用于实现系统的各个功能模块。 2. **AI人工智能**:AI在本项目中可能涵盖了自然语言处理(NLP)、机器学习(ML)等子领域。NLP可能用于理解和解析用户的查询,提取关键信息;ML则可能用于学习用户的行为模式,预测并推荐可能需要的联系人。 3. **联系人管理**:系统的核心功能是管理联系人数据,包括添加、编辑、删除联系人,以及按不同标准(如姓名、电话、邮箱等)进行搜索和分类。可能还包含了联系人信息的导入导出功能,支持常见的文件格式如CSV或VCF。 4. **开发文档**:提供的开发文档通常包含系统的设计理念、架构、实现方法、测试案例等内容,是理解项目的重要资料。它帮助用户了解系统的工作原理,同时也为其他开发者提供了维护和扩展的指导。 5. **源程序**:源程序是项目的核心部分,包含了用Python编写的代码。通过阅读源代码,可以深入了解系统内部的工作流程,学习如何将AI技术应用于实际项目。 6. **可执行程序**:除了源代码,项目还提供了一个可执行程序,使得非开发人员也能直接运行和使用系统,无需安装Python环境或理解代码。 7. **模板/素材**:如果项目中包含了模板或素材,可能是用于界面设计的图形元素,如按钮、图标等,这些有助于提升用户体验,使界面更加直观和美观。 这个项目作为一个毕业设计,对于学习Python编程和AI应用的学生来说,是一个很好的实践案例。通过分析和研究,学生不仅能巩固编程技能,还能了解到如何将AI技术整合到实际软件中,提升软件的智能化程度。同时,项目中的开发文档和源代码也提供了宝贵的学习资源,有助于提高软件工程的实践能力。
2024-09-10 22:15:48 141.21MB 毕业设计 python 人工智能
1
MES(Manufacturing Execution System,制造执行系统)是一种智能制造解决方案,旨在提高制造业的生产效率、质量和降低成本。该系统 能够对生产过程进行实时监控、数据采集和分析,并提供了智能化的生产计划、质量控制和供应链管理等功能。 MES 的核心价值观包括管理核心价值、组织价值、工作价值、效率价值、系统价值和信息价值等六个方面。其中,管理核心价值是指MES 能够提高制造运营的决策质量、凝聚制造管理协同工作能力和协助操作工降低作业出错率等。组织价值是指MES 能够降低不良率、提升产量、产值和聚焦生产车间改善等。工作价值是指MES 能够协助操作工降低作业出错率和提高作业效率等。效率价值是指MES 能够降低不良率、提升产量、产值和聚焦生产车间改善等。系统价值是指MES 能够聚焦生产车间改善和提高制造系统的整体效率等。信息价值是指MES 能够提供智能化的生产数据分析和改善生产过程等。 MES 的发展趋势包括智能制造、 Industrial Internet of Things(IIoT)、Cyber-Physical Systems(CPS)、Big Data 和人工智能等技术的融合应用。MES 也将与其他系统集成,如ERP、PLM、SCM 等,以形成一个更加完善的智能制造系统。 在制造行业数字化蓝图中,MES 将扮演着核心角色,旨在提高制造业的生产效率、质量和降低成本。MES 将与其他系统集成,如ERP、PLM、SCM 等,以形成一个更加完善的智能制造系统,并提供智能化的生产计划、质量控制和供应链管理等功能。 MES 是一种智能制造解决方案,旨在提高制造业的生产效率、质量和降低成本。其核心价值观包括管理核心价值、组织价值、工作价值、效率价值、系统价值和信息价值等六个方面。MES 的发展趋势包括智能制造、 Industrial Internet of Things(IIoT)、Cyber-Physical Systems(CPS)、Big Data 和人工智能等技术的融合应用。
2024-09-10 17:34:35 30.54MB 智慧城市
1
包括数据上传和消息获取并解析功能,只需要替换对应的参数和字段。 百度AI作画功能是一项基于人工智能技术的创新功能,它能够让用户通过输入文字描述或上传图片,生成艺术风格独特的绘画作品。该功能利用深度学习算法和神经网络模型,通过对大量艺术作品进行学习和分析,使得生成的作品具有各种风格和主题,例如油画、水彩画、素描等。用户可以根据自己的需求和喜好选择不同的风格和效果,从而创作出令人惊叹的艺术作品。同时,百度AI作画功能还具备自动修复和调整画面的能力,让用户能够轻松实现个性化的创作。
2024-09-10 16:20:25 196KB 人工智能
1
在本项目中,我们主要探讨如何使用OpenCV和TensorFlow这两个强大的工具来实现实时的人脸检测。OpenCV是一个开源的计算机视觉库,包含了众多图像处理和计算机视觉的算法,而TensorFlow则是一个广泛用于机器学习和深度学习的框架。通过结合这两者,我们可以构建一个系统,实时捕获摄像头中的画面并检测其中的人脸。 我们需要了解OpenCV的人脸检测模块。OpenCV自带了一个预训练的Haar级联分类器,这是一个基于特征级联结构的分类模型,专门用于人脸检测。这个模型可以在不同的光照、角度和遮挡条件下识别出人脸。在项目中,我们将加载这个模型,并使用它来分析摄像头的每一帧图像,找出可能包含人脸的区域。 接着,进入TensorFlow部分。虽然OpenCV的人脸检测已经很有效,但如果我们想要进行更高级的任务,比如人脸识别或表情识别,我们可以利用TensorFlow构建深度学习模型。例如,我们可以训练一个卷积神经网络(CNN)来识别不同的人脸或表情。TensorFlow提供了一种灵活的方式来定义和训练这些模型,并可以轻松地将它们部署到实际应用中。 在"camera_face_check-master"文件夹中,我们可以找到项目的源代码。这些代码可能包括设置摄像头、初始化OpenCV的人脸检测器、实时显示检测结果以及(如果有的话)使用TensorFlow模型进行进一步处理的部分。通常,代码会包含以下几个步骤: 1. 导入必要的库,如OpenCV和TensorFlow。 2. 加载预训练的Haar级联分类器。 3. 设置摄像头,开始捕获视频流。 4. 对每一帧图像进行处理,使用Haar级联分类器检测人脸。 5. 可选:如果使用了TensorFlow模型,将检测到的人脸作为输入,进行人脸识别或其他深度学习任务。 6. 在画布上绘制检测框,展示结果。 7. 循环执行以上步骤,直到用户停止程序。 在深度学习部分,你可能会遇到模型训练、验证和优化的相关概念,如损失函数、反向传播、优化器选择(如Adam、SGD等)、数据增强等。此外,模型的保存和加载也是关键,以便在后续运行中能快速使用训练好的模型。 这个项目为我们提供了一个将理论知识应用于实践的好例子,它展示了如何将传统的计算机视觉方法与现代深度学习技术相结合,以实现更高效、更智能的视觉应用。无论是对OpenCV的熟悉,还是对TensorFlow的理解,都能在这个过程中得到提升。通过这个项目,你可以深入理解人工智能和深度学习在人脸检测领域的应用,并为其他类似的计算机视觉任务打下坚实的基础。
2024-09-09 15:00:36 1.82MB 人工智能 深度学习 tensorflow
1
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com
2024-09-07 15:19:40 724KB
1
vosk-model-small-cn-0.3 Vosk是一个离线开源语音识别工具。它可以识别16种语言,包括中文。 API接口,让您可以只用几行代码,即可迅速免费调用、体验功能。 目前支持 WAV声音文件格式。 GITHUB 源码: https://github.com/alphacep/vosk-api 模型下载:https://alphacephei.com/vosk/models API调用示例文件: 包含python/nodejs/curl版本(http://www.moneymeeting.club/wp-content/uploads/2020/10/vosk.rar) 我在网页下载了好久,所以分享在这里,应该不会比那里还要慢吧
2024-09-06 22:22:12 31.7MB 语音识别 人工智能
1
2017年5月23日至27日,中国围棋九段棋手柯洁在乌镇与AlphaGo对弈三场,三场全负,AlphaGo也成为历史上第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人。AlphaGo是怎么成长起来的呢? 2022年8月8日,自动驾驶出行服务平台“萝卜快跑”的5辆自动驾驶车辆,正式在重庆市永川区开展车内无安全员的自动驾驶示范运营服务。截止目前,示范区已有L4级自动驾驶测试和示范运营车辆30辆,安全测试里程累计超过100万公里。自动驾驶的安全是如何得到保障的呢? 2022年12月,人工智能聊天机器人ChatGPT刷爆网络,网友们争先恐后去领略它的超高情商和巨大威力。它能够通过理解和学习人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务。ChatGPT是如何炼成的呢?
2024-09-06 00:56:16 4.19MB 人工智能 课程资源
1
### SUNET: Speaker-Utterance Interaction Graph Neural Network for Emotion Recognition in Conversations #### 背景与意义 在当今社会,随着人工智能技术的飞速发展,对话系统中的情感识别(Emotion Recognition in Conversations, ERC)已经成为了一个重要的研究领域。通过捕捉对话中说话人的情绪变化,ERC在客户服务、心理治疗、娱乐等多个领域都有着广泛的应用前景。近年来,图神经网络(Graph Neural Networks, GNNs)因其能够捕捉复杂非欧几里得空间特征的能力,在ERC任务中得到了广泛应用。然而,如何有效地建模对话过程,以提高在复杂交互模式下的ERC效果仍然是一个挑战。 #### 主要贡献 为了解决上述问题,本文提出了一种名为SUNET的新方法,该方法构建了一个基于说话人和话语(utterance)交互的异构网络,有效考虑了上下文的同时,还考虑了说话人的全局特性。具体而言,SUNET的主要贡献包括: 1. **构建Speaker-Utterance Interactive Heterogeneous Network**:SUNET首先构建了一个说话人-话语交互的异构网络,该网络不仅包含了话语节点,还包括了说话人节点,这样可以在考虑话语之间关系的同时,也考虑到说话人之间的联系。 2. **基于GNN的情感动态更新机制**:在异构网络的基础上,SUNET利用图神经网络对话语和说话人的表示进行动态更新。这一机制根据说话顺序来更新话语和说话人的表示,从而更好地捕捉到对话中的情感变化。 3. **定制化的节点更新策略**:为了充分利用异构网络的特点,SUNET分别为话语节点和说话人节点设计了不同的更新方法,确保每个节点都能得到最合适的表示更新。 #### 方法论 1. **网络结构**: - **话语节点**:每个话语被视为一个节点,其包含的内容可以是文本、语音或两者的组合。这些节点通过边与其他话语节点相连,表示对话中的话语顺序。 - **说话人节点**:每个说话人都有一个对应的节点,该节点不仅包含了说话人的基本信息,还包含了该说话人在整个对话中的所有话语的汇总信息。 2. **节点特征更新**: - **话语节点**:采用特定的GNN层(如GCN、GAT等),根据当前话语及其前后话语的内容,更新该话语节点的特征向量。 - **说话人节点**:说话人节点的更新则依赖于与其相关的所有话语节点的信息。通过聚合这些信息,可以更新说话人节点的特征向量,以反映说话人在对话中的情绪状态。 3. **训练与优化**: - 使用多轮对话数据进行训练,并采用交叉验证等技术优化模型参数。 - 在训练过程中,可以引入额外的任务(如说话人身份识别)作为辅助任务,以进一步提升模型性能。 #### 实验结果 为了验证SUNET的有效性,作者在四个ERC基准数据集上进行了广泛的实验。实验结果显示,SUNET相比于现有方法取得了平均0.7%的性能提升。这表明,通过结合说话人和话语的交互信息,并利用图神经网络对其进行建模,可以有效地提升情感识别的效果。 SUNET为对话情感识别提供了一种新的视角,通过构建说话人-话语交互的异构网络并利用图神经网络进行建模,实现了对对话中情感变化的有效捕捉。这种方法不仅在理论上有一定的创新性,在实际应用中也具有很高的潜力。
2024-09-05 17:14:59 1.18MB 机器学习 人工智能 深度学习
1