### 数字电视前端系统介绍 #### 一、硬件介绍 **1. 节目源接收设备** 节目源接收设备是数字电视前端系统的核心组成部分之一,主要用于接收来自不同渠道的节目信号,包括但不限于卫星信号、地面信号以及光纤信号。根据来源的不同,可以分为以下几类: - **卫星接收机**:用于接收卫星信号。市场上常见的品牌有同州、九州、东银等。卫星接收机能够将卫星信道节目转换为本地可用的形式。 - **SDH网络适配器**:用于将主干网SDH中的DS3光信号转换为符合ASI标准的电信号。主要品牌包括Tandberg、飞利浦、数码视讯等。 - **编码器**:将模拟信号转化为数字信号的关键设备。它不仅可以对模拟节目进行编码,还可以对高码率节目进行压缩,以及对码率变化较大的节目进行限制。常见的编码器品牌有Barco、Tandberg、数码视讯等。 **2. 前端应用设备** 前端应用设备则主要负责处理和管理接收到的节目信号,确保信号的传输质量,并且实现多种增值服务。具体包括: - **复用器**:用于将单个节目的流与其他数据(如PSI/SI)进行复用,形成多节目流。此外还支持对流进行解复用、过滤、替换等操作。常见的复用器品牌有科学亚特兰大、SCOPUS、PBI等。 - **统计复用**:这是一种根据实际带宽需求动态调整节目传输比特率的技术,可以更高效地利用传输带宽。通过对输入的基础流进行实时分析,动态分配比特率,从而避免资源浪费。 #### 二、软件介绍 **1. CA — 条件接收系统** 条件接收系统(Conditional Access System, CAS)是一种控制用户访问特定节目或服务的技术,通常用于付费电视服务。CAS的主要功能包括授权管理、密钥分发等,确保只有合法用户才能观看付费内容。 **2. EPG — 电子节目指南** 电子节目指南(Electronic Program Guide, EPG)是一种提供节目信息的服务,帮助用户快速找到感兴趣的节目。EPG通常会显示各个频道当前正在播放的节目以及未来一段时间内的节目安排。 **3. SMS — 用户管理系统** 用户管理系统(Subscriber Management System, SMS)用于管理和跟踪用户的信息和服务状态。它包括用户注册、账单管理、服务变更等功能,确保服务提供商能够有效地管理大量用户的数据。 **4. 其他增值业务系统** 除了上述核心系统外,还有其他一系列增值服务系统,如数据广播、证券信息、VOD/NVOD等,这些服务进一步增强了数字电视平台的功能性和用户体验。 - **数据广播**:允许通过电视提供文本信息、图片、简单动画等内容。 - **证券信息**:提供最新的股市行情、财经新闻等信息。 - **VOD/NVOD**:视频点播/准视频点播服务,使用户能够按需观看电影、电视剧等视频内容。 #### 三、系统介绍 **1. 数字电视组网** 数字电视组网涉及到信号的采集、处理、传输等多个环节,主要包括以下几个方面: - **信源发生**:指节目信号的获取过程,如通过卫星接收机接收卫星信号。 - **信号处理**:对原始信号进行编码、复用等处理,以便于传输。 - **信道传输**:通过不同的传输介质(如卫星、光纤、地面)将信号传送到用户端。 - **管理系统**:包括CA、EPG、SMS等软件系统的集成与管理。 **2. 网管系统** 网管系统负责监控整个数字电视网络的状态,确保系统的稳定运行。这包括对设备状态的监控、故障检测与报警、性能数据分析等。 **3. 备份方案** 为了防止意外故障导致服务中断,数字电视前端系统还需要设计合理的备份方案。这通常包括关键设备的冗余配置、数据备份与恢复机制等。 ### 数字电视传输的三种主要信道 **1. 卫星传输(S)** 优点:覆盖面积广,成本相对较低,便于维护。 缺点:易受天气影响,安全性稍差。 **2. 光纤传输(C)** 优点:信号传输质量高,不受电磁干扰的影响。 缺点:建设和维护成本较高。 **3. 地面传输(T)** 优点:灵活性高,不易受到大范围攻击。 缺点:覆盖范围有限,信号容易受障碍物影响。 ### 节目源接收 根据节目来源的不同,接收方式也有所不同: - **卫星节目**:通过卫星接收机接收所有节目信号。对于透明节目和加密节目,采用不同的接收机进行接收。 - **SDH节目**:使用DS3转ASI适配器将主干网SDH中的DS3光信号转换为ASI标准的电信号。 - **本地节目**:通过编码器将模拟信号转换为数字信号。 数字电视前端系统是一个复杂但高效的体系结构,它不仅包括硬件设备的配置,还包括软件系统的集成与管理。通过对信号的采集、处理、传输等各个环节的精心设计与优化,确保了高质量的电视服务体验。
2025-11-18 20:56:42 741KB 数字电视 前端设备
1
标题和描述中提及的STM32L4 sigma delta数字滤波器模块(DFSDM)是一个专门针对模拟信号进行数字化处理的硬件模块,它能够接收外部sigma-delta调制器的高速串行数据流,并在芯片内部完成数字滤波,最终输出处理后的数据。该模块特别适合于处理来自微机电系统(MEMS)麦克风的脉冲密度调制(PDM)信号。 外部sigma-delta调制器通常作为独立的器件存在,它们采用sigma-delta调制原理,通过模拟输入(通常为差分输入)来提供数字输出,输出的数字信号是一个快速的1位数据流。这些调制器可提供大约16位的分辨率,并具有高达20MHz的数据速率。这类设备来自多个供应商,包括ST(意法半导体)、德州仪器(TI)以及模拟设备公司等。 STM32L4系列微控制器中集成了DFSDM模块,它实现了外部sigma-delta调制器输出数据的完整后处理。DFSDM模块可以从外部调制器接收数据流,并通过数字滤波实现最终的24位结果。该模块具备安全和紧急功能,可以在安全或应急情况下使用。 DFSDM模块支持多达8个输入串行通道,能够接收和解码原始的比特串行流,并为滤波器提供数据和时钟信号。模块支持多种协议,包括单线Manchester编码模式和SPI协议(时钟和数据线)。时钟信号既可以是主时钟也可以是从时钟,并且可以进行配置,例如采样边沿、时钟速度以及输入时钟频率的测量和时钟存在检测。 DFSDM模块还具备可调整的时钟输出功能,可以从两个时钟源(系统时钟和音频PLL时钟)中调整分频因子,音频PLL时钟可以针对音频应用进行精确调整。 在MEMS麦克风支持方面,DFSDM模块能够处理来自MEMS麦克风的PDM数据信号。MEMS麦克风通常输出脉冲密度调制的音频数据信号。如果两个MEMS麦克风并行连接(立体声支持),那么上升沿的时钟信号可以采样左声道的音频数据,而下降沿的时钟信号则采样右声道的音频数据。DFSDM模块能够通过两条线(数据+时钟以串行格式)接收来自两个MEMS麦克风(立体声)的信号。 DFSDM模块还内置了内存缓冲区,支持直接内存访问(DMA)和CPU传输数据。它提供了通道选择功能,允许对8个通道进行选择,既可以在扫描模式下逐个转换选定的通道,也可以在单通道模式下只转换一个通道。转换可以通过软件(SW)或硬件(HW)触发器(定时器输出或外部引脚)来启动。 通过上述信息,我们可以总结出STM32L4 DFSDM模块的主要功能和特点包括: 1. 高速串行数据流的接收和解码。 2. 数字滤波功能,将1位数据流转换为24位数字输出。 3. 支持外部sigma-delta调制器的直接集成,无需额外的模拟数字转换电路。 4. 支持多种数据传输协议和时钟配置。 5. 可以处理多个输入通道,具备通道扫描和单通道模式。 6. 能够实现立体声信号的分离采样和转换。 7. 配备有内存缓冲区,支持DMA和CPU数据传输。 8. 适用于音频应用,具备音频应用专用的时钟输出调整功能。 通过深入理解STM32L4系列中的DFSDM模块的功能和特点,设计师和工程师可以更加有效地利用这一模块来处理音频信号和其他传感器数据,特别是在对数据精度和处理速度有较高要求的场合。
2025-11-17 22:18:29 234KB 综合文档
1
人工智能赋能的数字化智能工厂是制造业转型的重要方向,其通过高度自动化的生产线以及信息技术、制造技术与人工智能技术的深度融合,实现了制造过程的智能化、高效化和柔性化。智能工厂的定义和特点包括高度自动化,数据驱动的决策过程,灵活生产能力和资源节约与环保。在智能工厂中,自动化生产采用先进的设备和机器人,利用联网、大数据分析和人工智能技术,实现生产线的实时智能化管理,优化生产流程,提高效率和产品质量,减少无效工时和运营成本。 智能工厂的发展趋势体现在个性化定制、数字化与网络化、绿色制造等方面。个性化定制满足客户多样化和个性化的需求;数字化与网络化通过5G、物联网等技术实现设备间的互联互通,构建数字化、网络化的智能工厂;绿色制造则要求在制造过程中降低能耗、减少废弃物排放。 基于AI框架的智能工厂对制造业的意义重大。AI技术可以提高生产效率,降低运营成本,并增强市场竞争力。通过对生产过程的实时监测和智能化管理,AI技术确保了产品质量的稳定可靠,并可实现快速响应市场需求。 智能工厂的架构设计思路涉及系统整体架构、生产运营的管理、智慧生产与控制、以及智能物流等方面。系统整体架构基于大数据中心,实现制造能力与运营水平的提升;生产运营管理包括ERP、OA、EHR等系统的决策分析,提高制造水平;智慧生产与控制环节包括PDM、WMS、MES等任务令、生产、工艺、设备、物料、操作和环境管理;智能物流方面则通过AGV、传输线、机器臂等自动化设备实现生产线的无人化管理。 技术平台架构方面,智能工厂采用智能化云基础设施,结合智能大数据平台、多媒体平台、物联网平台和人工智能平台,实现计算与网络、存储和CDN、数据库、数据分析和多媒体服务等多方面的智能化。该架构还涉及到安全与管理、物联网服务、应用服务、网站服务应用引擎等,确保了智能工厂的高效、安全和可持续发展。 智能工厂的挑战主要包括技术、管理和运营等多方面的问题,例如数据安全、隐私保护、技术更新快速以及人才培养等。而其前景则包括智能化生产、网络化协同、规模化定制、服务和延申,以及虚拟化管理全生命周期等方向,为企业提供全价值链的优化方案,最终实现全产业链虚拟资源的有效利用。 展望未来,随着人工智能、边缘计算、工业以太网、卫星通信等技术的进一步发展,智能工厂将实现更加智能化的生产与管理。通过这些技术的综合运用,智能工厂将更好地适应市场变化,快速响应客户需求,实现供应链体系、金融体系的高效运作,为企业提供全方位的竞争优势。此外,人工智能与工业互联网的结合将推动智能工厂向更高层次的自动化和智能化发展,进一步提高制造业的整体水平和竞争力。
2025-11-17 17:33:35 5.55MB 人工智能 AI学习
1
利用labview实现的数字电压表设计,分直流和交流仿真信号,还可以测量实际信号,实际信号来源为USB4716的采集卡
2025-11-16 19:47:13 192KB labview
1
在电子工程领域,EWB(Electronic Workbench)是一款广泛使用的电路仿真软件,它允许用户设计、分析和测试各种电路系统,包括数字电路。本话题主要围绕使用EWB设计数字钟这一主题展开,数字钟是电子工程中常见的实践项目,尤其在教学过程中常作为课程专案。下面将详细阐述相关知识点: 1. **数字钟的工作原理**: 数字钟通常由分频器、计数器、译码器和显示器组成。时间信号首先经过分频器降低频率,然后由计数器累计时间,译码器将计数器的二进制输出转换为人类可读的时间格式,最后由七段显示器显示出来。 2. **EWB软件介绍**: EWB提供了直观的图形化界面,用户可以通过拖放元件、绘制电路图来构建电路。软件内包含了丰富的模拟和数字元件库,支持直流分析、交流分析、瞬态分析等多种电路分析方法。 3. **数字钟设计过程**: - **电路设计**:选择合适的时钟源(如晶振),并通过分频器(如74系列的分频芯片)得到所需的秒、分钟、小时脉冲。 - **计数器**:使用二进制计数器(如74系列的计数器芯片)记录时间,并确保计数器在达到最大值后能正确复位。 - **译码器**:选择适当的译码器(如74系列的译码器芯片)将二进制时间转换为十进制时间,以便于显示。 - **显示驱动**:连接七段显示器(LED或LCD)并配置相应的驱动电路,确保每个数码管能正确显示时间。 4. **仿真与分析**: 在EWB中,完成电路设计后,可以进行仿真分析,验证电路是否按照预期工作。这包括检查各部分电路的波形,确保时间脉冲正确,计数器计数无误,以及译码后的显示信号正确。 5. **课程学习价值**: 使用EWB设计数字钟不仅能够帮助学生理解数字电路的基本概念,如计数器、译码器的工作原理,还能提高他们动手实践和问题解决的能力。此外,通过仿真过程,学生还能学习到电路分析和调试的方法。 6. **注意事项**: 在实际设计中,需注意电源、接地、时钟同步等问题,确保电路稳定可靠。同时,仿真结果应与实际电路行为相匹配,必要时可能需要对电路进行优化。 通过这个项目,学生不仅能深入理解数字电路的基础知识,还能提升使用EWB这类工具的技能,对今后的电子设计工作有着重要的实践意义。
2025-11-16 16:04:54 202KB
1
空间域图像增强技术主要通过直接处理图像像素来改进图像的质量,这是数字图像处理领域中重要的技术手段之一。该技术主要包括点处理和掩模处理两种方法。点处理涉及单个像素的运算,比如直方图均衡化,这是一种调整图像对比度的方法,通过扩展图像的直方图分布来使图像的对比度更佳。而掩模处理涉及使用一个模板或掩模(通常是一个子图像),根据这个掩模在图像的每个像素周围进行局部操作,典型的掩模处理方法之一是邻域平均法,它主要用于图像平滑,去除噪声。 直方图均衡化原理涉及到图像的统计特性,通过统计原图像的像素分布,再通过灰度变换函数对像素进行重新映射,使得原图的直方图分布更加均匀,从而达到增强图像对比度的效果。尽管直方图均衡化在视觉效果上有很大提升,但均衡化后的直方图并不一定完全均匀分布,原因在于图像像素值和灰度级是离散的,且均衡化处理时可能会造成灰度级的合并。 邻域平均法是图像平滑的一种常用技术,其基本思想是用像素及其邻域内像素的平均值来替换该像素的值。这种方法可以有效地去除图像的随机噪声,但同时也可能使图像边缘变得模糊。为了克服这一缺点,引入了加门限法,这种改进方法通过判断邻域像素值与中心像素值之间的差异,并设置一个阈值,只有当差异小于这个阈值时才进行平均处理,从而可以更好地保留图像的边缘信息。 在实验中,使用了MATLAB这一强大的科学计算工具来实现上述算法。MATLAB内置了各种函数,如“histeq”用于直方图均衡化处理,而“imhist”则用于显示图像的直方图。除了内置函数,MATLAB也支持用户自定义程序,通过编写相应代码来实现更复杂的图像处理功能。 通过本实验的学习与实践,可以深刻理解空间域图像增强的原理,掌握直方图均衡化和邻域平均法等常用图像处理技术,并通过编写和运行MATLAB程序来加深对理论知识的理解和应用能力。 实验分析部分,通过对原图像的直方图均衡化处理,可以观察到处理前后的图像及其直方图变化,从视觉效果上比较图像的亮度、对比度及细节信息的增强。此外,通过在图像中加入高斯噪声,再进行4-邻域平均平滑处理,可以观察到噪声消除效果及边缘的模糊和改善情况。实验结论部分则对实验结果进行了总结,解释了图像处理前后效果的差异以及产生的原因。 附件部分则包含了实验设计的结果和程序清单,提供了实验操作的具体细节和代码。这些附件是实验报告的重要组成部分,能够让读者了解实验的具体操作步骤,也为其他研究人员提供了参考和借鉴的可能。 本实验报告通过理论学习和MATLAB编程实践,深入探讨了空间域图像增强技术,不仅让读者学习到了基本的图像处理知识,而且通过实验加深了对相关技术的理解和应用能力。
1
随着物联网、大数据、人工智能等新技术的蓬勃发展,数字孪生技术应运而生,通过模拟数字世界与物理世界的互动,促使后者变得更加高效有序。数字孪生技术最早应用于制造业,但其应用范围已经拓展至某省市的空间规划、建设与发展中。该技术的兴起得益于感知控制技术和综合技术的集成创新。通过积累大量的数据,某省市能够实现从量变到质变的跃进,并在感知建模和人工智能等信息技术上取得突破性进展。 某省市大脑建设方案强调的是建立一个智能化、可持续运营的新型某省市,并通过数字孪生技术吸引高端智力资源,实现从局部应用到全局优化的迭代发展。基于多源数据融合,某省市大脑建设方案提出了“云-网-端”三个层次的解决方案,旨在形成虚实对应、相互映射的智能设施与感知体系。数据治理体系和运营体系是某省市大脑建设的重点。城市大脑总体设计包括应用体系、支撑体系、数据治理体系和运营体系。其中,全域布局的智能设施、智能专网的建设、以及城市大脑的智能化操控是建设的关键部分。 为了实现某省市的精准映射,必须统筹建设感知体系,统一采集和汇聚不同来源的数据,形成全域覆盖的规范、智能、联接的感知布局。智能设施空间布局通过部署信息杆柱、智能网关、边缘计算节点等设备,支持各种通信协议,将数据统一汇聚后交由某省市大脑管理。空间维度上,感知载体和设施体系布局分为地上、地下、空中、水域四部分,而传输方式则以无线为主或有线为主。 在标识体系和编码设计方面,某省市提出建立统一的编码标识IMSI,通过eSIM卡实现与物联网设备的绑定,形成某省市物联标识解析体系,实现不同标识之间的互联互通。数字某省市支撑安全的关键在于建设一个高效运行的智能专网,支持某省市的各类智能化运行场景需求,以及感知信息的流动。 某省市大脑作为核心,是将不同来源的数据汇聚与交融,并运用人工智能技术实现自主学习与集中调度,从而达到某省市系统整体福利的理想效果。城市大脑利用城市画像和居民画像,结合城市全要素数据和信息模型(CIM),通过人工智能技术实现全局数据的治理。主要技术包括数据处理、模拟仿真、知识发现、深度学习、资源调配、态势认知、策略制定等,实现虚实互动,让数字世界仿真、物理世界执行。 在某省市大脑建设方案中,重点强调了智能设施的全面布局、智能专网的建设以及智能操控大脑的构建。智能设施的布局依赖于大规模的设备部署和数据采集,以及统一的标识编码系统。智能专网则需要满足地上地下全通达、有线无线全接入以及万物互联全感知的要求,确保网络的高效运行和安全。而智能操控大脑的核心功能在于数据治理和人工智能赋能,这包括数据的采集、处理、深度学习以及实现城市运营的智能化决策和调度。 某省市大脑的建设是一个系统性工程,它不仅涉及技术层面的建设,还包括管理、运营和维护等多个方面。通过数字孪生技术,某省市能够构建一个全面的智能化系统,实现高效的资源分配、精准的城市治理、以及可持续的发展模式,最终提升城市的整体运行效率和居民的生活质量。此外,某省市大脑的建设也强调了平台的开放性和兼容性,支持持续的创新和迭代,为未来某省市的数字化转型奠定坚实基础。
2025-11-15 21:20:04 31.33MB 数字孪生
1
目前,单片机(51,ARM等)技术、DSP技术和EDA技术是数字电路设计领域的三大主流技术,精通其中的一种技术都易于就业。在高等学校,EDA技术这门课一般是讲述FPGA/CPLD器件的设计技术,是现代硬件工程师必须掌握的技术之一。电信学院的电信、通信和光信息专业都开设了《EDA技术》这门课程,从2021年开始,该课程改名为数字系统设计,课时和内容都增加了,教学目标也提高了。EDA技术的发展很快,体现在器件、开发软件及其功能不断更新升级,其教学也要与时俱进,2015年更新了实验箱,本实验讲义基于新实验箱而编写。数字系统设计实验的最终目的是要学会使用VerilogHDL语言来设计FPGA。要求掌握VerilogHDL语言、一种开发工具、FPGA的设计流程和FPGA器件的基本知识和使用方法。实验使用的开发软件是ALTERA公司的厂家工具QuartusII13.1,该软件的应用非常广泛,也是FPGA设计的入门工具之一,比较适合于高校的本科教学。新的实验设备以DE1-SOC板为核心板(台湾友晶公司生产)
2025-11-15 16:57:46 159.93MB
1
在深度学习领域,手写数字识别技术已经取得了显著进展,特别是在应用卷积神经网络(CNN)这一架构后,识别准确率得到了极大提升。卷积神经网络凭借其出色的图像特征提取能力,在手写数字识别任务中展现出优异的性能。CNN通过模拟人类视觉处理机制,能够逐层提取输入图像的局部特征,这些特征随着网络层级的加深逐渐抽象化,从而能够准确地识别出图像中的手写数字。 在本项目中,CNN模型已经过精心训练,以适应手写数字识别任务。通过大规模的手写数字图像数据集进行训练,网络得以学习到不同手写数字的特征,并通过多层神经网络逐级优化。此外,项目的前端界面为用户提供了友好的交互方式,用户可以通过前端界面上传手写数字图片,并且立即获取识别结果。这一界面的开发,使得技术成果能够更加直观和便捷地服务于最终用户。 此外,该项目不仅仅是模型和前端界面的简单集合,它还包含了已经训练好的模型权重。这意味着用户可以无需自行训练模型,直接运行项目并体验到手写数字识别的功能。这大大降低了技术门槛,使得非专业背景的用户也能轻松尝试和应用先进的深度学习技术。 项目实现过程中,对于数据集的处理、模型的设计与优化、以及前后端的集成开发等方面,都要求开发者具备扎实的理论知识和实践经验。数据集的清洗、标准化和归一化是训练高质量模型的基础;模型架构的设计需要兼顾计算效率和识别准确率,避免过拟合或欠拟合;前端界面的开发则需要考虑到用户体验,确保识别过程流畅且结果易于理解。 该项目是一个集成了深度学习、图像处理和前端开发的综合性应用。它不仅展示了深度学习在实际应用中的潜力,同时也为相关领域的开发者和用户提供了一个高效的解决方案。
2025-11-15 00:42:27 88.08MB 深度学习 手写数字识别 CNN模型
1
数字系统设计是电子工程领域的核心组成部分,它涉及使用硬件描述语言(HDL)来构建和实现各种数字电路。在该领域中,双口RAM(随机存取存储器)是一个重要的组件,它允许同时从两个不同的端口访问存储内容,这在需要高速数据交换的应用中尤其有用。双口RAM的设计和实现对于学生和工程师来说是一项重要的技能,因为它们能够在多个设备或处理单元之间提供快速而有效的数据共享。 本实验套装提供了一整套代码和仿真文件,旨在指导学习者如何在数字系统设计中使用双口RAM。这些文件是学习数字电路设计和验证的宝贵资源,尤其是对于那些正在准备毕业设计、课程设计或课后实验的学生来说。通过这些实践操作,学生可以更好地理解双口RAM的工作原理,并掌握其在数字系统设计中的应用。 实验套装中包含了两个主要的子项目或模块,分别是lab_PLL和labLPM。PLL代表相位锁环(Phase-Locked Loop),这是一种常用的电子电路,能够产生与输入信号频率相关的稳定时钟信号。PLL在数字系统设计中扮演着调整和同步时钟频率的重要角色,确保数据的准确传输。 另一方面,LPM代表参数化模块(Library of Parameterized Modules),它是数字设计中用于简化设计过程的预先构建的模块集合。通过使用LPM,设计者可以不必从头开始构建每一个组件,而是可以直接利用这些模块来搭建复杂的系统。这大大缩短了开发时间,并提高了设计的可靠性和效率。 整个实验套装中的文件为学生和工程师提供了深入的实践机会,让他们能够在仿真的环境中测试和验证他们的设计。这些仿真文件可能包括测试平台(testbench),用于验证双口RAM实现的正确性和性能。通过对双口RAM的设计、实现和验证的学习,学生可以掌握数字系统设计的重要技能,并为将来的职业生涯打下坚实的基础。 在本实验中,学生将学会如何编写HDL代码来描述双口RAM的结构和功能,并且通过仿真来测试其行为是否符合预期。这不仅涉及到理论知识的学习,还包括了实践操作的训练,是数字电路设计教育中不可或缺的一部分。通过实验中的代码编写和仿真测试,学生可以深入了解双口RAM在数字系统中的工作方式,以及如何在实际应用中对其进行优化。 此外,本实验套装的文件可能会涉及对特定硬件描述语言(如VHDL或Verilog)的使用,这是数字电路设计中最为常见的编程语言。熟练掌握这些语言对于从事数字系统设计的工程师来说是非常重要的,因为它们是构建和描述复杂数字系统的主要工具。 数字系统设计实验套装不仅为学生提供了学习双口RAM使用的平台,而且还涵盖了PLL和LPM等关键概念的实现。通过这些实验,学生能够获得宝贵的实践经验,并为将来在电子工程领域的职业生涯做好准备。
2025-11-14 18:30:57 11.35MB 毕业设计 课程设计 课后实验
1