SVM回归预测,机器学习算法
2023-04-13 11:13:28 30KB 支持向量机 算法 回归 机器学习
1
压缩包含一个完整的Qt控制台工程,注释纤细,调试运行通过,也可以直接移植到win32上。(工程中有两个主程序,main.cpp中样本数据格式为opencv的Mat矩阵。main1.c中样本为float型的二维数组。编译的时候把不同的主程序添加进工程即可。main1.cpp可以不要opencv的库。)
2023-04-12 21:20:46 1.16MB libsvm 支持向量机 分类器
1
系统相关介绍博客链接:https://blog.csdn.net/shooter7/article/details/129935028 摘要: 车牌识别是一项重要的模式识别研究方向,具有广泛的应用。它被视为安全和交通运行的核心技术,可用于自动收费、交通管制、边境保护、车辆盗窃等重要领域。然而,在某些情况下,由于车牌颜色不同而无法很好地工作。因此,车牌识别不仅具有广泛的应用,而且具有重要的研究意义。 本文提出了一种基于OpenCV和SVM的车牌识别系统。该系统通过对车牌图像进行预处理、特征提取和分类,实现对车牌的自动识别。具体来说,本文首先对车牌图像进行预处理,包括图像增强、去噪、二值化等操作,提高车牌图像的质量。然后,本文采用颜色特征、形状特征和纹理特征对车牌图像进行特征提取,提高车牌图像的识别准确性。最后,本文采用SVM算法对车牌图像进行分类,实现对车牌的自动识别。通过实验验证,本文所设计的车牌识别系统具有较高的识别准确性和速度,可以满足实际应用的需求。
2023-04-12 09:46:54 213.04MB opencv 机器学习 支持向量机 软件/插件
1
svm支持向量机python代码
2023-04-11 17:52:13 12KB SVM python
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
SVM故障诊断MATLAB代码
2023-04-07 00:48:43 93KB 支持向量机
1
近年来,文本的情感分析一直都是自然语言处理领域所研究的热点问题;微博作为一种短文本,用词精炼而简洁,富含观点、倾向和态度。因此,识别微博的情感倾向具有重要的现实意义。提出一种基于SVM和CRF的情感分析方法,使用多种文本特征,包括词、词性、情感词、否定词、程度副词和特殊符号等,并选用不同的特征组合,通过多组实验使情感分析效果最优。实验显示,选用词性、情感词和否定词的特征组合时,SVM模型的正确率达到88.72%,选用情感词、否定词、程度副词和特殊符号的特征组合时,CRF模型的正确率达到9044%。
1
代码有详细注解,多输出单输出,Excel数据读取,适合初学者,先到先得!
2023-04-05 12:50:05 61KB 支持向量机 MATLAB 回归预测
1
针对传统的过采样算法在增加样本的同时可能使决策域变小和噪声点增加的问题进行了研究,提出了一种基于错分的混合采样算法。该算法是以SVM为元分类器,AdaBoost算法进行迭代,对每次错分的样本点根据其空间近邻关系,采取一种改进的混合采样策略:对噪声样本直接删除;对危险样本约除其近邻中的正类样本;对安全样本则采用SMOTE算法合成新样本并加入到新的训练集中重新训练学习。在实际数据集上进行实验,并与SMOTE-SVM和AdaBoost-SVM-OBMS算法进行比较,实验结果表明该算法能够有效地提高负类的分类准确率。
1
从人脸图像特征提取和分类器构 建两方面分析了人脸识别系统设计的关键点,提出了以主成分分析技术和支持向量机技术相结合构建人脸识别系统的策略,同时在主成分分析技术的理论基础上提出了一种快速PCA算法.通过实验系统在ORL人脸库上的测试结果,分析了该系统的相关参数和特征向量维度的选取对系统识别率的影响,并得到了其最优解.同 时,通过实验证明了所提出方法在小训练集下的识别率优于其它一般方法,其识别率比一般的人工神经网络法提高了7%~10%左右.
1