基于jupyter notebook的python编程—–利用梯度下降算法求解多元线性回归方程,并与最小二乘法求解进行精度对比目录一、梯度下降算法的基本原理1、梯度下降算法的基本原理二、题目、表格数据、以及python环境搭建1、多元线性回归分析求解题目2、准备的多元线性回归方程的变量的表格数据3、搭建python环境三、梯度下降算法求解多元线性回归的方程的python代码实现1、导入基本库、数据,并为变量赋值2、定义系数初始值以及学习率和迭代次数3、定义最小二乘法函数-损失函数(代价函数)4、定义梯度下降算法求解线性回归方程系数python函数5、代用函数,进行系数求解,并打印6、画出回归方
2021-10-28 11:04:59 491KB jupyter NOT notebook
1
数学建模中,关于多元线性回归模型的解题方法和求解过程
2021-10-16 18:42:07 72KB 多元线性回归模型
1
针对徐州雾霾情况,通过搜集徐州市2017年365天的日空气质量指数AQI数据,其9个相关影响变量数据(包括风力,机动车保有量,火电厂、炼钢厂、炼焦厂平均各排口每小时各主要污染物的排放量),在MATALB中采用多元线性回归方法建立了模型、参数估计和模型检验,并在已得模型的基础上剔除不显著的变量和样本异常值,经过两次改进,由九元线性模型简化为四元线性模型。通过拟合优度检验、显著性检验、多重共线性诊断和异常值残差诊断后,绘制出拟合对比图,验证了所得四元线性回归模型的准确性和实用性。
2021-10-16 17:22:32 768KB 行业研究
1
数据科学迷你项目 决策树回归,随机森林和多元线性回归的精度比较 风险资本家雇用您来预测一家初创公司的利润。 因此,您必须处理一个数据集,该数据集包含50个创业公司的详细信息,并根据某些功能预测新创业公司的利润。 根据您的决定和预测,是否应该投资特定的创业公司。 数据集包含以下字段:研究与发展趋势-研发管理支出总额-行政管理支出支出总额-营销市场支出总额-创业公司运营的州利润-获利启动 在应用机器学习算法之前,您必须执行以下任务:1)处理缺失值2)准备数据进行训练和测试3)应用决策树算法训练模型4)应用随机森林回归算法训练模型5)比较线性回归的精度。
2021-10-16 01:04:32 65KB JupyterNotebook
1
多元线性回归模型 回归模型的矩阵表达式: Y=X+U
2021-10-15 19:28:28 842KB 时间序列
1
基于jupyter notebook的python编程—–运用sklearn库,导入文件数据模拟多元线性回归分析的目录一、运行jupyter notebook,搭建python环境1、打开Windows终端命令行,输入==jupyter notebook==,打开我们的jupyter工具,如下所示:2、在jupyter的web网页中创建python文件,如下所示:3、现在就可以在jupyter的代码行里面输入我们的代码啦!二、以下列的xlsx表格文件为例,编写我们的最小二乘法的python代码的分解步骤1、导入我们需要的基本库2、导入我们数据文件==多元线性回归.xlsx==3、为我们的x,y
2021-10-15 14:13:43 125KB ar jupyter le
1
(研究生 数理统计)多元线性回归及显着性检验Matlab程序(完美版)
2021-10-14 18:46:59 81KB matlab
1
上一篇文章讲述了梯度下降法的数学思想,趁热打铁,这篇博客笔者将使用梯度下降法完成多元线性回归,话不多说,直接开始。 我们假设我们的目标函数是长这样的: import numpy as np import pandas as pd # 读入数据 data = pd.read_csv('D:/Advertising.csv') # 学习率alpha lr = 0.00001 # 参数 theta0 = 0 theta1 = 0 theta2 = 0 theta3 = 0 # 最大迭代次数 epochs = 1000 #假设目标函数 def h_predict(theta0, theta1, t
2021-09-28 15:34:27 53KB 回归 多元线性回归 梯度
1