数字图像在获取的过程中,由于光学系统的像差、 光学成像衍射、 成像系统的非线性畸变、 摄影胶片的感光的非线性、 成像过程的相对运动、 大气的湍流效应、环境随机噪声等原因, 图像会产生一定程度的退化。因此,必须采取一定的方法尽可能地减少或消除图像质量的下降,恢复图像的本来面目, 这就是图像复原, 也称为图像恢复。
图像复原与图像增强有类似的地方, 都是为了改善图像。但是它们又有着明显的不同。图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因, 分析引起退化的环境因素,建立相应的数学模型, 并沿着使图 像降质的逆过程恢复图像。从图像质量评价的角度来看, 图像 复原就是提高图像的可理解性。而图像增强的目的是提高视感 质量,图像增强的过程基本上是一个探索的过程, 它利用人的心理状态和视觉系统去控制图像质量, 直到人们的视觉系统满意为止。
图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原来的景物图像。因而,图像复原可以理解为图像降质过程的反向过程。建立图像复原的反向过程的数学模型,就是图像复原的主 要任务。经过反向过程的数学模型的运算,要想恢复全真的景物图像比较困难。所以, 图像复原本身往往需要有一个质量标 准, 即衡量接近全真景物图像的程度,或者说,对原图像的估 计是否到达最佳的程度。
由于引起退化的因素众多而且性质不同,为了描述图像退化过程所建立的数学模型往往多种多样,而恢复的质量标准也往往存在差异性,因此图像复原是一个复杂的数学过程,图像复原的方法、技术也各不相同。
2021-10-24 10:53:22
656B
图像复原
1