详见博文:https://blog.csdn.net/m0_51220742/article/details/124869371#comments_27958462
2023-11-21 16:54:16 6.21MB stm32 fft 信号处理
1
用matlab软件 设计实现贝斯估计的例子 仿真实验 计算错误率
2023-11-16 20:23:47 2KB 贝叶斯估计
BADS是一种新颖的快速贝斯优化算法,旨在解决棘手的优化问题,尤其是与拟合计算模型有关(例如,通过最大似然估计)。 在存在实际模型拟合问题的基准测试中,BADS的表现与其他许多常见且最新的MATLAB优化器(例如fminsearch,fmincon和cmaes [1])相当或更高。 BADS当前在世界各地的许多计算实验室中得到使用,涉及从行为,认知和计算神经科学到工程和经济学的一百多种引用和应用。 如果没有可用的梯度信息,并且目标函数是非分析性的或嘈杂的,例如通过数值逼近或模拟评估,则建议使用BADS。 BADS不需要特定的调整,并且可以像其他内置的MATLAB优化器(例如fminsearch)一样现成运行。 ***有关广泛的信息,教程和文档,请访问该项目的GitHub页面: https : //github.com/lacerbi/bads *** 如果您有兴趣估计参数的后验
2023-11-15 19:45:49 2.47MB matlab
1
软件: anaconda jupyter notebook 运行代码文件:naive bayes.ipynb python环境
2023-11-12 20:53:50 55.11MB 机器学习 python 数据集 朴素贝叶斯算法
1
java编写的贝斯网络分类器(贝斯算法java版本的代码) JavaBayes-0.346.zip JavaBayes-javadoc-0.346.jar JavaBayes-manual-0.346.ps.gz
2023-11-09 07:05:05 901KB 贝叶斯
1
【完整课程列表】 完整版 南京邮电大学 机器学习课程教程PPT课件 1-1.机器学习简介-上课版part1(共31页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 1-2 机器学习简介-上课版part2(共55页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 2. 概念学习 分类(共27页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 3 决策树(共44页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 4-1 贝斯学习(共18页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 5. 神经网络(共42页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 6 支持向量机(共29页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 7. 基于实例的学习-k近邻(共17页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 8-1 模式选择和评估(共30页).pdf 完整版 南京邮电大学 机器学习课程教程PPT课件 8-2 模式选择和评估(共14页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 9. 计算学习理论(共26页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 10 聚类分析(共74页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 12 特征选择(共36页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 13 Sparse-SDM10(共133页).pdf 完整版 南京邮电大学 机器学习课程教程PPT课件 14 机器学习总结(共25页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 15 Overview of ensemble(共31页).ppt
2023-11-02 10:05:25 18.97MB 机器学习 贝叶斯 神经网络
完整全套资源下载地址:https://download.csdn.net/download/qq_27595745/66030967 【完整课程列表】 完整版 南京邮电大学 机器学习课程教程PPT课件 1-1.机器学习简介-上课版part1(共31页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 1-2 机器学习简介-上课版part2(共55页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 2. 概念学习 分类(共27页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 3 决策树(共44页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 4-1 贝斯学习(共18页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 5. 神经网络(共42页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 6 支持向量机(共29页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 7. 基于实例的学习-k近邻(共17页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 8-1 模式选择和评估(共30页).pdf 完整版 南京邮电大学 机器学习课程教程PPT课件 8-2 模式选择和评估(共14页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 9. 计算学习理论(共26页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 10 聚类分析(共74页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 12 特征选择(共36页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 13 Sparse-SDM10(共133页).pdf 完整版 南京邮电大学 机器学习课程教程PPT课件 14 机器学习总结(共25页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 15 Overview of ensemble(共31页).ppt
fft,时域转化成频域的工具,对仿真信号进行了测试
2023-10-30 13:11:51 295KB 傅里叶变换 python 时域频域 时频转化
python朴素贝斯垃圾邮件分类与检测系统+可视化 毕业设计(包含文档+源码+部署教程)Django框架 为了解决垃圾邮件导致邮件通信质量被污染、占用邮箱存储空间、伪装正常邮件进行钓鱼或诈骗以及邮件分类问题。应用Python、Sklearn、Echarts技术和Flask、Lay-UI框架,使用MySQL作为系统数据库,设计并实现了基于朴素贝斯算法的邮件分类系统,并以Web形式部署在本地计算机。运用Sklearn库对KNN算法、SVM算法和朴素贝斯算法进行建模和训练,将训练结果进行分析和对比得出朴素贝斯算法在准确率、召回率和精确率三个指标下比其他分类算法更适合邮件分类,因此选择朴素贝斯算法作为系统核心算法。系统功能包括邮件检测与数据管理两大核心模块,邮件检测模块,采用基于朴素贝斯算法,使用TF-IDF算法对邮件进行特征提取并将邮件内容以及检测结果存储于MySQL数据库,存储到MySQL中的数据将用于数据管理模块;数据管理模块包括数据存储、数据分析、数据可视化。系统采用黑盒测试方法对两个模块进行功能性测试,测试结果符合预期。系统满足设计基本需求,能安全、稳定和可靠地运行。
2023-10-25 05:35:47 16.96MB python 毕业设计 垃圾邮件 邮件分类
1
非均匀傅里变换是传统傅里变换的扩展,它尤其适合于适合于非均匀采样数据或要计算 任意频率的频谱.