记录一下自己学到的关于主成分分析的东西(转)
2022-06-24 14:34:11 816KB PCAmatlab
1
人工智能-非线性核主成分的神经网络台风强度集合预报建模研究.pdf
多项式微分,谱聚类,广义主成分分析
2022-06-21 02:01:28 10KB GPCA
1
机器学习深度学习实战图像处理matlab基于主成分分析的图像压缩和重建
2022-06-19 17:05:31 125KB 深度学习 机器学习 图像处理 matlab
1
PCA(principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据压缩算法。在PCA中,数据从原来的坐标系转换到新的坐标系,由数据本身决定。转换坐标系时,以方差最大的方向作为坐标轴方向,因为数据的最大方差给出了数据的最重要的信息。第一个新坐标轴选择的是原始数据中方差最大的方法,第二个新坐标轴选择的是与第一个新坐标轴正交且方差次大的方向。重复该过程,重复次数为原始数据的特征维数。
2022-06-18 21:46:07 37KB PCA
1
海宁陆地面积接近七百平方千米,是典范的江南水乡,海宁地理位置处于长江三角洲南冀,浙江省的北部。海宁被外界誉为“中国皮革之都”,在全国范围内,是重要的皮革生产基地和集散中心。同时海宁拥有总建筑面积达45万平方米的皮草专业市场——海宁中国皮革城[1]。 海宁皮草的产业范围、工艺技术、主要经济指标和知名品牌数目均居海内前线,此中皮草服装产量、皮草交易量、皮草服装外贸出口供货值三项均列全国第一[5]。由于海宁中国皮革城的存在,在多年以前皮草业就是海宁的热门产业,不仅有各种中大型企业的建立,许许多多的自产自销个体经营户也如雨后春笋般加入到皮草业的大军中来。在海宁,平均3秒就能生产一只票夹[2];平均48秒制成一组牛皮革沙发套[2];平均1.3秒诞生一件皮衣[2]。皮草皮革产业是海宁的传统优势产业,也是海宁重要的区域特色产业[2]。
主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。 主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
2022-06-13 17:20:50 8KB 主成分分析
1
个性化HRTF合成 基于神经网络,主成分分析和人体测量学的个性化HRTF的合成。 该存储库是作为巴西圣玛丽亚联邦大学声学工程学士学位论文项目的一部分开发的。 个性化HRTF应用 使用提出的模型,可用于生成具有SOFA或HeSuVi扩展名的个性化HRTF的MATLAB应用。 Auraliza应用程序 可以使用SOFA HRTF和n通道音频输入创建实时虚拟听觉场景的MATLAB应用。 主-(基于PCA) 包含预处理和后处理,回归模型和HRTF重建例程。 可能有必要为本地目录调整路径。 功能 与SOFA HRTF和主要例程使用的常规功能一起使用的工具箱。
1
利用PCA主成分分析,对人脸图像进行降维压缩,之后重构人脸图像。
2022-06-11 18:09:18 64KB PCA主成分分析 重构
代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法代码 离散小波与主成分分析的数据降维方法