易语言是一种专为中国人设计的编程语言,它以简明的中文语法,降低了编程的门槛,使得更多非计算机专业的人也能参与到编程活动中。本例程“易语言-易语言提取网页中链接地址”旨在教授如何利用易语言来实现从网页中抓取链接地址的功能,这对于网络爬虫开发、数据分析等应用场景十分实用。 我们要了解易语言中的“扩展界面支持库”。这个库提供了一系列的API函数,用于与用户界面进行交互,如创建窗口、按钮、文本框等元素。在这个例程中,可能使用了扩展界面支持库来展示提取出的链接地址或者供用户输入网址。 涉及到的“多线程支持库”是易语言提供的并发处理工具。多线程允许程序同时执行多个任务,提高程序的运行效率。在提取网页链接的场景中,如果网页数量庞大,多线程可以并行处理多个网页,显著加快数据获取速度。 再者,“互联网支持库”是易语言中用于网络通信的模块,它提供了诸如HTTP请求、FTP操作等网络功能。在这个例程中,互联网支持库被用来发送HTTP请求到指定的网页URL,获取HTML源代码,这是提取链接的基础。 我们提到的“正则表达式支持库”在提取链接中起着关键作用。正则表达式是一种强大的文本处理工具,可以匹配符合特定模式的字符串。在网页中,链接地址通常有固定的格式,如``,通过编写相应的正则表达式,可以高效地从HTML文本中匹配并提取出所有链接。 在“易语言提取网页中链接地址源码”中,程序员可能会先用互联网支持库获取网页的HTML文本,然后利用正则表达式库解析这些文本,找出所有的链接地址。同时,为了提高处理大量网页的效率,可能会使用多线程技术,让每个线程负责处理一个或一部分网页。 这个例程涵盖了易语言的基础编程、网络通信、界面交互以及文本处理等多个方面,对于学习易语言的初学者来说,是一个很好的实践项目,可以帮助他们理解并掌握易语言的相关知识,并能够运用到实际的网络编程中去。通过阅读和分析源码,不仅可以提升编程技能,还能深入了解网络数据抓取的原理。
1
在造纸工业中,醋酸乙烯酯共聚物乳液是一种重要的化工原料,它在造纸中有着广泛的应用。这种乳液由于其价格低廉、生产容易、使用方便、粘合强度高以及无毒安全、无环境污染等优点,已被应用于造纸、胶粘剂、皮革、化妆品、纺织和建筑等多个工业部门。在造纸过程中,醋酸乙烯酯共聚物乳液主要用作湿部化学助剂和纸张浸渍剂。 湿部化学助剂的主要作用是提高纸张的质量,特别是提高纸张的强度。在造纸湿部中添加一些添加剂,可以改善纸张的物理和化学性能。一般而言,添加2%~5%的聚合物乳液到干纸重中,就可以显著提高纸张的干湿拉伸强度、耐化学性能、柔韧性和耐折性。特别是醋酸乙烯酯-丙烯酸共聚物乳液,可以作为非漂白纸浆的打浆添加剂,它在硫酸铝的作用下,能够制造出具有高柔韧性的纸张。 醋酸乙烯酯乳液还能与其他化学物质结合,用于改善纸张的特定性能。例如,Y.Sato开发了一种抗静电纸,他将聚醋酸乙烯酯乳液稀释后,加入氢氧化钠和绿化铁,制成了悬浮液,然后加入牛皮纸浆和聚丙烯酰胺,最终抄造成纸。另外,把乙烯-醋酸乙烯酯共聚物乳液加入到牛皮纸浆中,再通过甲醇水溶液进行沉淀,可以制成耐水性和适印性优良的纸张。 在纸张浸渍剂的应用方面,随着我国造纸原料的恶化,草浆和废纸浆的大量使用导致纸张强度难以满足要求。因此,低档纸经过浸渍可以提高纸张的耐折度、破裂强度、干抗张强度和湿抗张强度等物理特性。聚醋酸乙烯酯共聚物乳液作为纸张浸渍剂的使用,能有效提高纸张的物理机械性能。例如,使用聚醋酸乙烯酯乳液和碳酸钙混合物进行纸张浸渍,可制备出高耐油性、高抗张强度、高破裂度和高耐折度的纸张。 在实际工业应用中,醋酸乙烯酯共聚物乳液不仅用作湿部化学助剂和纸张浸渍剂,而且通过化学改性,还可以用于制造具有特定功能的纸张。例如,利用乙烯-醋酸乙烯酯共聚物乳液和染料对纸张进行浸渍,可以获得具有优异记录性质的纸张。又如,SLMakover通过醋酸乙烯酯、N-羟甲基丙烯酰胺和阳离子季胺盐型丙烯酰胺系单体进行三元共聚,并与乙二醛反应,制得的反应产物用作纸浆浸渍剂,能显著提高纸张的湿强度。 醋酸乙烯酯共聚物乳液作为一种化工原料,在造纸工业中发挥着至关重要的作用。它的应用不仅提高了纸张的物理和化学性能,而且还增加了纸张的附加值。随着造纸工艺的不断进步和环保要求的提高,醋酸乙烯酯共聚物乳液的应用范围有望进一步扩大,它将继续在造纸工业中占据重要地位。
2025-09-06 13:46:17 283KB 首发论文
1
在PowerPoint中创建一个数字点计数器记分板是一项实用的技巧,尤其适用于课堂活动、知识竞赛或任何需要实时分数展示的场合。这个过程主要依赖于PowerPoint的宏(Visual Basic for Applications, VBA)功能,使得我们可以自定义交互式功能。下面将详细介绍如何制作这样一个计分板。 你需要有一个基础的PowerPoint模板。模板中通常包含计分板的设计,如两个或更多的分数区域,以及加减分的按钮。在提供的"PowerPoint Scoreboard PPTVBA"压缩包中,可能已经包含了这样的模板,你可以直接使用或者作为参考来创建自己的设计。 1. **设置计分板设计**: - 使用PowerPoint的形状工具绘制文本框,用于显示分数。 - 设计两个或多个得分区域,分别代表不同的队伍或参赛者。 - 添加按钮,比如“+”和“-”,代表加分和减分操作。 2. **启用VBA宏**: - 在PowerPoint中,转到“开发”选项卡(如果默认未显示,需在“文件”>“选项”>“自定义功能区”中添加)。 - 点击“Visual Basic”按钮打开VBA编辑器。 3. **编写VBA代码**: - 在VBA编辑器中,创建新的模块,然后编写处理点击事件的代码。 - 例如,为“+”按钮编写一个子程序,增加分数并更新分数文本框的值;为“-”按钮编写类似子程序,但减少分数。 - 可以使用变量存储当前分数,并通过Alt+F11快捷键调用子程序来修改分数。 4. **连接VBA与PowerPoint元素**: - 回到PowerPoint界面,选中加减分的按钮,然后在“插入”选项卡中选择“动作”。 - 在弹出的对话框中,选择“运行宏”,关联你之前在VBA中编写的子程序。 5. **跨页显示分数**: - 如果需要在多张幻灯片上同步显示分数,可以在每张幻灯片上放置相同的分数文本框,并确保所有文本框都链接到同一VBA变量。 - 当分数改变时,所有幻灯片上的分数都会自动更新。 6. **测试和调整**: - 运行PowerPoint演示文稿,通过点击按钮测试计分功能是否正常工作。 - 根据需要调整样式、颜色和字体,使计分板更符合实际应用场景。 制作完成后,你将拥有一个完全自定义的数字点计数器记分板,能够轻松地在课堂上或知识竞赛中使用。记得保存文件为PowerPoint Macro-Enabled演示文稿(.pptm格式),以保留VBA代码。这样,无论何时打开,计分功能都能正常运作。希望这个指南能帮助你成功创建并运用你的PowerPoint计分板。
2025-09-06 11:19:08 107KB PPT
1
在水声定位系统中, 为尽量提高系统对水下目标的定位性能, 选择合适的空间谱估计算法是关键。对 M VDR、MUSIC、ESPRIT 等几种空间谱估计常用算法的结构和原理进行了分析。针对水声定位系统工作环境, 通过 计算机仿真, 比较了各算法的估计精度、运行时间和环境要求等指标, 得出MVDR 算法相比其他算法性能更优 ### 水声定位系统中空间谱估计算法仿真分析 #### 一、引言 水声定位系统作为现代海洋探测的重要组成部分,在海洋资源开发、军事侦察等方面具有重要的应用价值。该系统通过处理由水下传感器基阵接收的数据来获取关于目标的位置信息,其核心在于如何准确地估计出声源的方向。为了提高系统的定位性能,合理选择空间谱估计算法至关重要。本文主要探讨了几种常用的空间谱估计算法(如MVDR、MUSIC、ESPRIT)的结构和原理,并通过计算机仿真实验比较了这些算法的性能差异。 #### 二、空间谱估计算法数学模型 ##### 2.1 阵列信号模型 为了实现水下目标的定位,通常采用由多个换能器组成的水听器阵列来接收远场目标发出的噪声信号。阵列的形式多种多样,包括均匀直线阵、直角阵、均匀圆阵等,其中最基础的是均匀直线阵。下面以均匀直线阵为例,介绍水听器接收到的数据模型。 假设均匀直线阵由m个换能器组成,彼此间距为d,远场信号以角度θ入射到阵列上。若入射信号为窄带信号,中心频率为f,波长为λ,水中声速为c,则第m个换能器相对于第一个换能器的信号延迟时间可以表示为: \[ \tau = (m-1)\frac{d\cos\theta}{c} \] 对于第k次快拍数据,各阵元得到的数据向量可以表示为: \[ X(k) = A S(k) + N(k), \quad k = 1, 2, \ldots, K \] 其中,\(X(k)\) 是第k次快拍的数据向量;\(A\) 是阵列响应矩阵,它包含了阵列几何形状的信息;\(S(k)\) 是源信号向量;\(N(k)\) 是加性噪声向量。 #### 三、空间谱估计算法原理及特性 ##### 3.1 MVDR算法 MVDR(Minimum Variance Distortionless Response)算法是一种基于约束最小方差准则的波束形成算法。其基本思想是在保持指定方向上的增益不变的前提下,使输出信号方差最小化。MVDR算法的优点在于能够有效抑制噪声,同时保持对目标信号的良好检测能力。然而,MVDR算法对参数估计误差较为敏感。 ##### 3.2 MUSIC算法 MUSIC(Multiple Signal Classification)算法是一种基于子空间分解的方法,用于估计信号源的方位。该算法首先将接收信号的协方差矩阵分解成信号子空间和噪声子空间,然后通过寻找噪声子空间中与阵列响应向量正交的方向来估计信号源的位置。MUSIC算法具有较高的分辨率,但计算复杂度较高。 ##### 3.3 ESPRIT算法 ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法同样是基于子空间的方法,但它通过利用不同子阵之间的旋转不变性来简化问题,从而降低计算复杂度。ESPRIT算法适用于具有特定结构的阵列配置,例如均匀线性阵列,它可以提供高精度的方位估计。 #### 四、仿真分析 在水声定位系统的工作环境下,通过计算机仿真比较了MVDR、MUSIC、ESPRIT三种算法的估计精度、运行时间以及对环境的要求。结果表明,在相同的仿真条件下,MVDR算法的性能优于其他两种算法,特别是在估计精度和抗干扰能力方面表现突出。此外,MVDR算法在计算复杂度方面也表现出较好的优势,这意味着它能够在实际应用中更快地完成计算任务。 #### 五、结论 选择合适的空间谱估计算法对于提高水声定位系统的性能至关重要。通过对MVDR、MUSIC、ESPRIT等几种常用算法的原理进行深入分析,并通过计算机仿真比较了它们在水声环境下的性能表现,我们发现MVDR算法在估计精度、计算效率等方面具有明显的优势。因此,在实际应用中,根据具体的需求和条件选择合适的算法是非常重要的。未来的研究还可以进一步探索如何优化现有算法或者开发新的算法来满足更高性能的要求。
2025-09-05 15:58:58 979KB 水声定位
1
1. 安装包核心文件 主程序:MathType-win-zh-7.8.2.441.exe(简体中文版安装包) 补丁:Crack 文件夹(含替换文件 MathType.exe,用于激活软件) Office加载项: MathType Commands 2016.dotm(Word 2016/2019/365 加载项) MathType Add-In for PowerPoint.ppam(PowerPoint 插件) 文档支持: MathType 用户手册.pdf(含快捷键、公式编辑技巧) Office集成常见问题.docx(解决加载失败、乱码等问题) 2. 安装步骤详解 独立安装流程:解压→运行安装程序→选择语言/路径→完成安装→替换破解文件→创建快捷方式。 Office集成流程:Word/PowerPoint 中添加加载项→信任中心配置→验证功能区选项卡。 3. 关键配置说明 兼容性设置:针对 Office 32位/64位系统的加载项选择。 信任中心调整:解决宏安全限制导致的加载失败问题。 语言与字体:确保公式显示为中文(避免繁体中文乱码)。 二、适用人群 学术研究者 需在论文中插入复杂数学公式(如微积分、矩阵、统计符号)的理工科学生或教师。 示例场景:撰写LaTeX格式论文时,通过MathType快速生成可视化公式并导出为PDF/PNG。 Office高频用户 经常使用Word/Excel/PPT编辑技术文档、教学课件或财务模型的职场人士。 示例场景:在PPT中插入动态公式(如化学方程式、物理公式),并支持实时编辑。 出版与排版人员 需要将公式嵌入InDesign、LaTeX等排版工具的专业设计师或编辑。 示例场景:通过MathType生成TeX代码,直接粘贴至LaTeX编辑器。 软考/PMP备考者 需在项目管理文档中插入公式(如挣值分析EVM、关键路径CPM计
2025-09-05 14:04:06 44.57MB Office集成 MathType
1
SiC模块与IGBT模块在工商业125KW级功率转换系统(PCS)中的应用研究是一个深度探讨半导体技术如何在工业应用中提供效率提升、性能改进和成本优化的重要话题。SiC (Silicon Carbide)模块作为新一代功率器件,相较于传统IGBT (Insulated Gate Bipolar Transistor) 模块,在若干关键技术参数和应用性能上展现出明显优势。 在工商业应用中,PCS的效率和可靠性至关重要,这直接影响到企业的能源成本和生产效率。功率器件是PCS中的核心部件,其性能决定着整个系统的效率、响应速度和散热需求。IGBT模块在过去的几十年里一直是功率转换的主流选择,然而随着SiC材料技术的成熟,SiC模块开始逐渐取代IGBT模块,特别是在高电压、高频率和高温条件下运行的应用场合。 SiC模块的关键优势在于其物理特性。与硅(Si)基器件相比,SiC器件能够承受更高的工作温度和更大的电压,且具有更低的导通电阻和更高的热导率。这意味着SiC模块可以在更小的封装内实现更高的功率密度,并且工作时产生的热量更少,冷却需求降低,从而减少了散热系统的成本和体积。 在125KW级的工商业PCS应用中,SiC模块与IGBT模块相比,主要有以下几个方面的应用优势: 1. 更高的功率密度:SiC模块能够提供更高的功率输出,这使得相同功率等级的设备可以设计得更加紧凑。 2. 更优的热性能:SiC器件具有更好的热导率,有助于提高系统的热效率,减少冷却系统的需求和成本。 3. 更高的工作效率:SiC模块在高电压下的导通损失较小,开关频率也更高,这使得系统整体效率得以提高,尤其在大功率设备中效果显著。 4. 更好的耐用性和可靠性:由于SiC材料的耐高温和高电压特性,SiC模块的耐用性和可靠性通常要好于传统的IGBT模块。 在给定文件中还提及了不同的封装形式,如Easy-Pack2B、TO-247Plus-3、EconoPack4、TO-247-4、Easy2B等,这些都是针对不同应用需求和环境考量而设计的封装解决方案。封装不仅影响器件的物理尺寸,也与散热性能、电气性能和机械稳定性密切相关。 从性能规格来看,IGBT模块和SiC模块的电压、电流规格各不相同。例如,IGBT分立器件规格可达1200V/200A或650V/150A,而SiC MOSFET模块则有650V/200A或1200V/30mΩ等规格。这些不同的规格为不同应用提供了多样化的选择。 另外,文中也提到了对散热器温度、结温、损耗的仿真测试,以及对开关损耗和散热器温度间关系的探讨。这表明SiC模块在面对更高工作温度时依然能保持良好的性能,这为在严苛环境下工作的PCS提供了更为可靠的保障。 通过这些技术细节,可以看出SiC模块取代IGBT模块在125KW工商业PCS中的应用前景是非常广阔的。虽然目前SiC模块的成本可能比IGBT模块要高,但从长期来看,其带来的系统效率提升、体积减小以及维护成本降低等优势,足以弥补初期的投入。随着技术的不断进步和生产规模的扩大,预计SiC模块的制造成本将进一步降低,从而推动这一技术在更广泛的领域得到应用。 文件内容还涉及了不同模块方案的功率器件选型、单机用量、单价及总成本比较,提供了从经济角度评估SiC模块和IGBT模块在125KW工商业PCS应用中性价比的依据。这些详尽的数据和对比分析,为制造商和用户在选择和应用SiC模块或IGBT模块时提供了参考。 SiC模块在125KW工商业PCS中的应用不仅体现了其在性能上的优势,也反映了其在未来能源效率提升和成本控制方面的巨大潜力。随着SiC技术的成熟和制造成本的降低,我们有理由相信SiC模块将在工商业电力电子设备领域扮演越来越重要的角色。
2025-09-05 09:25:02 10.66MB
1
深度学习使用的YOLO格式吸烟数据集,资源中包含训练代码,YOLO可直接训练, 数据集分为了test,vaild,train三中,test用于测试,val用于验证,train用于训练。 数据集中包含了两种类别,第一是Face(未吸烟),第二种是Smoke(吸烟) YOLO格式吸烟数据集是一种深度学习训练数据集,专为YOLO系列目标检测模型设计。YOLO(You Only Look Once)是一种流行的实时对象检测系统,因其速度和准确性而广泛应用于计算机视觉领域。该数据集的目的是识别和分类图像中的人物面部表情,具体区分是否处于吸烟状态。 YOLO格式的吸烟数据集按照不同的使用目的,被划分为三个主要文件夹:train、valid和test。其中,train文件夹包含了用于模型训练的图片和对应的标注文件;valid文件夹包含了用于验证模型准确性的图片和标注文件;而test文件夹则包含了用于模型测试的图片和标注文件。这种划分确保了在训练过程中,模型能够学习到足够的信息,同时通过验证集和测试集来评估模型的泛化能力和准确性。 数据集中的类别分为两类,分别是Face(未吸烟)和Smoke(吸烟)。这意味着训练好的模型将能够识别出图像中人物的面部表情是否属于吸烟行为。这样的数据集对于相关领域(如公共场所的健康监测、人群行为分析等)的研究和应用具有重要价值。 在使用YOLO格式的吸烟数据集时,需要具备一定的深度学习和计算机视觉基础知识,以及熟悉YOLO模型的工作原理。训练代码可能涉及数据预处理、模型配置、损失函数选择、训练过程监控和参数调优等方面。数据集的使用通常遵循以下步骤: 1. 数据准备:下载并解压YOLO格式的吸烟数据集,组织好文件结构。 2. 数据标注:确保所有的训练图片都配有准确的标注文件,标注文件中包含了对象的类别和位置信息。 3. 配置训练参数:设置YOLO模型的超参数,如学习率、批次大小、训练轮次等。 4. 训练模型:使用准备好的数据和配置文件开始训练过程。 5. 模型评估:使用验证集和测试集对训练好的模型进行评估,查看其在未见数据上的表现。 6. 应用部署:将经过评估的模型部署到实际应用中,进行实时的吸烟行为识别。 YOLO格式的吸烟数据集的可用性可从YOLOv5延续到最新的YOLOv8、甚至未来版本的YOLO,表明了其在目标检测领域的广泛兼容性和应用前景。随着YOLO系列算法的不断演进,这种数据集能够支持最新的技术进展,为研究人员和开发者提供了一个强大的工具,以研究和开发出更准确、更高效的吸烟行为识别系统。 由于数据集包含真实的面部图像,因此在处理和使用过程中,必须严格遵守相关的隐私保护法规和个人数据保护条例。对于数据集的使用,还需要确保获得必要的授权和许可。
2025-09-04 23:32:17 172.44MB YOLOv5 深度学习
1
vcpkg安装zlmediakit(windows环境) 包含:7z2301-extra.7z,cmake-3.27.1-windows-i386.zip,ireader-media-server-cdbb3d6b9ea254f454c6e466c5962af5ace01199.tar.gz,jom_1_1_4.zip,nasm-2.16.01-win64.zip open-source-parsers-jsoncpp-1.9.5.tar.gz openssl-openssl-openssl-3.2.0.tar.gz PowerShell-7.2.11-win-x86.zip sctplab-usrsctp-0.9.5.0.tar.gz strawberry-perl-5.38.0.1-64bit-portable.zip ZLMediaKit-ZLMediaKit-2e05119df12b ZLMediaKit-ZLToolKit-d2016522a0e4b1d8df51a78b7415fe148f7245ca.tar.gz
2025-09-04 20:49:46 423.69MB windows
1
多尺度材料模拟是一种研究材料力学性能的有效手段,尤其适用于金属及合金、纳米结构晶体材料等领域。通过多尺度建模与模拟,可以探究材料在原子、细观、宏观等不同尺度上的性能表现及其内在机理。本文提到的“有限温度下动态原子/离散位错耦合材料模拟方法”是一个重要的研究进展,它能够在不同尺度上研究含缺陷晶体材料的力学性能,对于微米尺寸含裂纹的面心立方(f.c.c.)铝单晶材料的变形和断裂过程进行模拟,从而分析裂纹尖端发射位错的临界应力强度因子与温度、裂纹前端厚度之间的关系。 纳米晶体金属及合金由于其优异的物理、化学和力学性能,在电子、汽车、航空航天等领域得到广泛应用。然而,制备过程中可能引入的材料内部缺陷会限制这些材料的优越性能。为了实现含缺陷纳米金属及其合金在工程中的应用,理解其力学行为并研究其变形破坏机理显得尤为迫切。多尺度研究在固体力学界与计算材料物理界是一个热门且活跃的研究方向,它涉及从第一性原理计算、分子动力学模拟、相场模拟、蒙特卡罗方法到有限元计算以及跨尺度模拟等多种数值模拟技术。 分子动力学模拟和离散位错动力学模拟是目前应用较多的两种模拟方法。分子动力学模拟,尤其是第一原理方法,能够提供原子尺度上的细致研究,但其成本高昂。而离散位错动力学模拟虽然能够捕捉到原子尺度上位错的相互作用,但在考虑材料在动态和有限温度下的复杂力学行为时仍然存在局限性。因此,对于与金属材料强度、韧性或塑性有关的重要变形过程,需要采用更加精确和全面的模拟方法。 本文的作者张瀛和曲绍兴来自浙江大学航空航天学院,他们的研究工作得到了国家自然科学基金资助项目的支持。研究者指出,多尺度材料模拟方法的应用可为材料设计和性能预测提供理论依据,并为相关领域带来技术进步。 关键词“固体力学”、“多尺度耦合”、“离散位错”、“分子动力学”、“有限元”等表明了该研究跨越了多个学科领域,并且综合运用了多种计算方法。对于理解含缺陷材料的力学性能与设计具有重要意义。 文章还提到了微米尺寸含裂纹的f.c.c.铝单晶在I型断裂过程中的变形情况。在这一研究中,获得了导致裂纹尖端发射位错的临界应力强度因子与温度及裂纹前端厚度之间的关系。这种关系的研究对材料的断裂力学分析至关重要,有助于预测材料在特定条件下的裂纹扩展行为和断裂韧性。 文章引用的中图分类号O341属于固体力学领域。固体力学是研究固体材料在外力作用下变形和破坏的规律,以及与之相关的应力、应变、塑性和韧性等力学性能的基础学科。多尺度材料模拟方法在这个领域的应用,有助于揭示材料在不同尺度下的力学响应,从而指导新材料的设计与开发。
2025-09-04 16:12:05 590KB 首发论文
1
中微CMS32M5533电动工具解决方案:800W角磨机设计手册,兼容CMS32M55xx/M5xxx系列单片机,反电动势检测,包含方案详述、SCH及PCB文件全集,"中微CMS32M5533电动工具技术方案:800W角磨机电力管理策略及SCH、PCB、BOM文件集成详解",中微CMS32M5533电动工具方案 800W角磨机方案,单片机兼容CMS32M55xx CMS32M5xxx系列,反电动势检测,含方案说明、电路原理图,电路原理图含SCH文件、PCB文件、BOM文件,电路原理图文件为源文件,非PDF~ ,中微CMS32M5533电动工具方案;800W角磨机方案;单片机兼容CMS32M55xx系列;反电动势检测;方案说明;电路原理图;SCH文件;PCB文件;BOM文件;源文件。,"中微CMS32M5533电动工具方案:800W角磨机单片机控制方案"
2025-09-04 15:11:09 278KB
1