§3.2 直线的方程 §3.2.1 直线的点斜式方程 一、教材分析 直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从一次函数y=kx+b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手. 在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程. 二、教学目标 1.知识与技能 (1)理解直线方程的点斜式、斜截式的形式特点和适用范围; (2)能正确利用直线的点斜式、斜截式公式求直线方程; (3)体会直线的斜截式方程与一次函数的关系. 2.过程与方法 在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程,学生通过对比理解“截距”与“距离”的区别. 3.情态与价值观 通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题. 三、教学重点与难点 教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程. 教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围. 四、课时安排 1课时 五、教学设计 (一)导入新课 思路1.方程y=kx+b与直线l之间存在着什么样的关系? 让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即 (1)直线l上任意一点P(x1,y1)的坐标是方程y=kx+b的解. (2)(x1,y1)是方程y=kx+b的解点P(x1,y1)在直线l上. 这样好像直线能用方程表示,这节课我们就来学习、研究这个问题——直线的方程(宣布课题). 思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾: 一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题). (二)推进新课、新知探究、提出问题 ①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程? ②已知直线l的斜率k且l经过点P1(x1,y1),如何求直线l的方程? ③方程导出的条件是什么? ④若直线的斜率k不存在,则直线方程怎样表示? ⑤k=与y-y1=k(x-x1)表示同一直线吗? ⑥已知直线l的斜率k且l经过点(0,b),如何求直线l的方程? 讨论结果:①确定一条直线需要两个条件: a.确定一条直线只需知道k、b即可; b.确定一条直线只需知道直线l上两个不同的已知点. ②设P(x,y)为l上任意一点,由经过两点的直线的斜率公式,得k=,化简,得y-y1=k(x-x1). ③方程导出的条件是直线l的斜率k存在. ④a.x=0;b.x=x1. ⑤启发学生回答:方程k=表示的直线l缺少一个点P1(x1,y1),而方程y-y1=k(x-x1)表示的直线l才是整条直线. ⑥y=kx+b. (三)应用示例 思路1 例1 一条直线经过点P1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形. 图1 解:这条直线经过点P1(-2,3),斜率是k=tan45°=1.代入点斜式方程,得y-3=x+2,即x-y+5=0, 这就是所求的直线方程,图形如图1所示. 点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力. 变式训练 求直线y=-(x-2)绕点(2,0)按顺时针方向旋转30°所得的直线方程. 解:设直线y=-(x-2)的倾斜角为α,则tanα=-, 又∵α∈[0°,180°), ∴α=120°. ∴所求的直线的倾斜角为120°-30°=90°.∴直线方程为x=2. 例2 如果设两条直线l1和l2的方程分别是l1:y=k1x+b1,l2:y=k2x+b2,试讨论: (1)当l1∥l2时,两条直线在y轴上的截距明显不同,但哪些量是相等的?为什么? (2)l1⊥l2的条件是什么?
2021-05-19 11:02:58 513KB 直线的方程教案
第二章 点、直线、平面之间的位置关系 本章教材分析 本章将在前一章整体观察、认识空间几何体的基础上,以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系;通过大量图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,初步体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题. 本章主要内容:2.1点、直线、平面之间的位置关系,2.2直线、平面平行的判定及其性质,2.3直线、平面垂直的判定及其性质.2.1节的核心是空间中直线和平面间的位置关系.从知识结构上看,在平面基本性质的基础上,由易到难顺序研究直线直线直线和平面、平面和平面的位置关系.本章在培养学生的辩证唯物主义观点、公理化的思想、空间想象力和思维能力方面,都具有重要的作用.2.2和2.3节内容的编写是以“平行”和“垂直”的判定及其性质为主线展开,依次讨论直线和平面平行、平面和平面平行的判定和性质;直线和平面垂直、平面和平面垂直的判定和性质. “平行”和“垂直”在定义和描述直线直线直线和平面、平面和平面的位置关系中起着重要作用.在本章它集中体现在:空间中平行关系之间的转化、空间中垂直关系之间的转化以及空间中垂直与平行关系之间的转化. 本章教学时间约需12课时,具体分配如下(仅供参考): 2.1.1 平面 约1课时 2.1.2 空间中直线直线之间的位置关系 约1课时 2.1.3 空间中直线与平面之间的位置关系 约1课时 2.1.4 平面与平面之间的位置关系 约1课时 2.2.1 直线与平面平行的判定 约1课时 2.2.3 直线与平面平行的性质 约1课时 2.2.2 2.2.4 平面与平面平行的判定平面与平面平行的性质 约1课时 2.3.1 直线与平面垂直的判定 约1课时 2.3.2 平面与平面垂直的判定 约1课时 2.3.3 直线与平面垂直的性质 约1课时 2.3.4 平面与平面垂直的性质 约1课时 本章复习 约1课时
§2.3 直线、平面垂直的判定及其性质 §2.3.1 直线与平面垂直的判定 一、教材分析 空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中直线与平面的垂直问题是连接线线垂直和面面垂直的桥梁和纽带,可以说线面垂直是立体几何的核心.本节重点是直线与平面垂直的判定定理的应用. 二、教学目标 1.知识与技能 (1)使学生掌握直线和平面垂直的定义及判定定理; (2)使学生掌握直线和平面所成的角求法; (3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论. 2.过程与方法 (1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程; (2)探究判定直线与平面垂直的方法. 3.情态、态度与价值观 培养学生学会从“感性认识”到“理性认识”过程中获取新知. 三、教学重点与难点 教学重点:直线与平面垂直的判定. 教学难点:灵活应用直线与平面垂直判定定理解决问题. 四、课时安排 1课时 五、教学设计 (一)导入新课 思路1.(情境导入) 日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象. 在阳光下观察直立于地面的旗杆及它在地面的影子.随着时间的变化,尽管影子BC的位置在移动,但是旗杆AB所在直线始终与BC所在直线垂直.也就是说,旗杆AB所在直线与地面内任意一条不过点B的直线B′C′也是垂直的. 思路2.(事例导入) 如果一条直线垂直于一个平面的无数条直线,那么这条直线是否与这个平面垂直?举例说明. 如图1,直线AC1与直线BD、EF、GH等无数条直线垂直,但直线AC1与平面ABCD不垂直. 图1 (二)推进新课、新知探究、提出问题 ①探究直线与平面垂直的定义和画法. ②探究直线与平面垂直的判定定理. ③用三种语言描述直线与平面垂直的判定定理.
2021-05-19 11:02:21 1.5MB 直线、平面垂直的判定及其性质
§4.2 直线、圆的位置关系 §4.2.1 直线与圆的位置关系 一、教材分析 学生在初中的学习中已了解直线与圆的位置关系,并知道可以利用直线与圆的交点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系,但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现.在高一学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系从而作出判断.适可而止地引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质. 二、教学目标 1.知识与技能 (1)理解直线与圆的位置的种类; (2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. (二)过程与方法 设直线l:ax + by + c = 0,圆C:x2 + y2 + Dx + Ey + F = 0,圆的半径为r,圆心到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点: (1)当d>r时,直线l与圆C相离; (2)当d=r时,直线l与圆C相切; (3)当d<r时,直线l与圆C相交; 3.情态与价值观 让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想. 三、教学重点与难点 教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判断直线与圆的位置关系. 四、课时安排 2课时 五、教学设计  第1课时 (一)导入新课 思路1.平面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点有直线方程和圆的方程的建立、直线与圆的位置关系等,本节主要学习直线与圆的关系. 思路2.(复习导入) (1)直线方程Ax+By+C=0(A,B不同时为零). (2)圆的标准方程(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r. (3)圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为(-,-),半径为. (二)推进新课、新知探究、提出问题
2021-05-19 11:02:21 991KB 直线、圆的位置关系
直线的交点坐标与距离公式
2021-05-19 11:02:20 345KB 直线的交点坐标与距离公式
此代码使用radon变换进行检测直线,选择大于阈值的直线在图上绘出。其中绿色直线为检测出的直线,红色直线是中间结果。
2021-05-19 10:48:11 2KB radon变换 直线检测 RT
1
简单的颜色渐变线~供新手学习~关键是思想方法
2021-05-18 13:48:56 161KB vc6.0 mfc 渐变线
1
这是一个很不错的用C#画直线的程序,可以坐标画线,也可以鼠标拖动,还有橡皮筋的效果,很不错的!有需要的可以参考!
2021-05-17 22:00:13 127KB C# 画直线
1
计算机图形学,简单直线的绘制
2021-05-17 18:04:18 67.45MB 计算机图形学 MFC
1
C++最小二乘法拟合直线,根据数据直接计算直线的斜率、截距和相似度,即拟合的好坏。
2021-05-15 11:57:50 2KB C++ 最小二乘法 拟合直线
1