随着我国列车行驶速度的不断提高,列车的行车安全逐渐得到了人们的重视,海量列车轮对监测数据为分析列车运行状态提供了条件.为了提高列车轮对故障诊断效率和准确性,文章提出一种基于大数据分析的列车轮对故障诊断方法,针对传统列车轮对故障诊断方法在处理大规模监测数据集时存在处理时间长,故障结果不准确等问题.首先设计一个监测数据融合框架,然后将多故障诊断循环神经网络算法与大数据MapReduce分布式计算框架相结合,利用循环神经网络算法特征提取能力和MapReduce快速计算能力.这样不但能够发挥循环神经网络故障特征提取能力,还能够满足列车轮对故障诊断精确性和实时性的需求,最后通过实例分析,证明了该方法的有效性.
1