随着视频技术的飞速发展,越来越多的视频应用逐步进入人们的生活中,因此对视频质量的研究很有意义。基于卷积神经网络和循环神经网络强大的特征提取能力并结合注意力机制,提出一种无参考视频质量评价算法。该算法首先利用VGG(Visual Geometry Group)网络提取失真视频的空域特征,然后利用循环神经网络提取失真视频的时域特征,引入注意力机制对视频的空时特征进行重要度计算,根据重要度得到视频的整体特征,最后通过全连接层回归得到视频质量的评价分数。在3个公开视频数据库上的实验结果表明,预测结果与人类主观质量评分具有较好的一致性,与最新的视频质量评价算法相比具有更好的性能。
2022-03-16 13:10:57 3.98MB 机器视觉 视频质量 卷积神经 循环神经
1
本项目是一个完整的深度学习实践,课题是人脸表情识别,使用到的模型是卷积神经网络,难度在简单——中等级别,方便初学者入门。在这里,面部表情识别相当于一个分类问题,共有7个类别。其中label包括7种类型表情。源代码方便大家开箱即用,学习参考! 动手完成这个项目之后,可以学习到: 1. 深度学习中CNN(卷积神经网络)的使用,为之后学习相关神经网络模型做了很好的铺垫。 2. 学会使用深度学习框架之一Pytorch的使用。 3. 多分类问题在实际中的应用,是二分类的扩展。 4. 从数据处理,可视化,到模型搭建的过程,是一种经验和技巧的积累,达到“举一反三”的效果。
2022-03-16 09:16:26 47.22MB pytorch cnn python 人工智能
对于基于块进行立体匹配的深度学习方法而言,网络结构的设计对匹配代价的计算至关重要,同时,卷积神经网络(CNN)在图像处理时的耗时问题也亟待解决。提出一种基于“缩小型”网络的CNN立体匹配方法。利用CNN训练左右图像块的相似性,计算出立体匹配的匹配代价。其中,CNN特征提取阶段,通过对每个层增加相应的批归一化层,可以使训练使用更大的学习率,加快网络训练收敛速度。另外,网络设计中全连接层采用“逐层缩小”的形式,结合上述网络优化和损失函数改善,在保证精度的同时提高了运行速度。使用KITTI数据集对算法进行验证,实验结果证明,相比目前国内外先进方法,本文算法在精度方面有一定优势,相比部分方法,速度有较大提升。
2022-03-15 15:40:07 6.34MB 机器视觉 立体匹配 匹配代价 相似性学
1
ADMM 使用Radio Galaxy图像反卷积
2022-03-15 14:57:16 28.84MB JupyterNotebook
1
针对低照度条件下图像降质严重的问题, 提出了一种基于深度卷积神经网络(DCNN)的低照度图像增强算法。该算法根据Retinex模型合成训练样本, 将原始低照度图像从RGB (Red Green Blue)空间转换到HSI (Hue Saturation Intensity)颜色空间, 保持色度分量和饱和度分量不变, 利用DCNN对亮度分量进行增强, 最后将HSI颜色空间转换到RGB空间, 得到最终的增强图像。实验结果表明, 与现有主流的图像增强算法相比, 所提算法不仅能够有效提升亮度和对比度, 改善过增强现象, 而且能够避免色彩失真, 主观视觉和客观评价指标均得到了进一步提高。
2022-03-14 16:29:46 13.55MB 图像处理 图像增强 Retinex模 卷积神经
1
【图像识别】基于卷积神经网络(CNN)实现垃圾分类Matlab源码
2022-03-14 10:25:11 22KB
1
使用联合边引导卷积神经网络的深度图上采样进行虚拟视图合成
2022-03-14 09:50:53 926KB 研究论文
1
异物侵入铁路限界对铁路系统可靠性造成了极大的威胁。为达到高分类准确率及低模型内存占用率兼备的目的,针对既有技术方法中分类效果、泛化性能较差以及耗时久、模型占用空间大等问题,本文提供了一种快速训练算法,采用网络迁移压缩同时进行的方式,提出基于特征图L1或L2范数的递归式裁剪准则剔除冗余卷积核以压缩网络。对于单个相机新场景的目标分类任务,只需使用在混合场景数据上得到的最优分类网络模型通过压缩和微调训练便可以实现不同场景铁路异物分类的快速训练。实验表明,在基于铁路场景数据库的测试中,该算法可以将原始VGG16模型的参数消耗内存压缩1 020倍,在不同的单个相机场景测试样本库上压缩后网络的分类误差最低为0.34%。
1
随着深度学习的发展,卷积神经网络作为其重要算法被广泛应用到计算机视觉、自然语言处理及语音处理等各个领域,并取得了比传统算法更为优秀的成绩。但是,卷积神经网络结构复杂,参数量和计算量巨大,使得很多算法必须在GPU上实现,导致卷积神经网络难以应用在资源不足且实时性要求很高的移动端。为了解决上述问题,文中提出通过同时优化卷积神经网络的结构和参数来对卷积神经网络进行压缩,以使网络模型尺寸变小。首先,根据权重对网络模型结果的影响程度来对权重进行剪枝,保证在去除网络结构冗余信息的冋时保留模型的重要连接;然后通过量化感知( quanTIκaτion- awareτraining)对卷积神经网络的浮点型权重和激活值进行完全量化,将浮点运算转换成定点运算,在降低网络模型计算量的冋时减少网络模型的尺寸。文中选用 tensorflow深度学习框架,在 Ubuntu16.04操作系统中使用 Spyder编译器对所提算法进行验证实验结果表眀,该算法使结枃简单的 Lenet模型从l.64M压缩至θ.36M,压缩比达到η8%,准确率只下降了了0.016;使轻量级网络 Mobilenet模型从16.9M压缩至3.1M,压缩比达到81%,准确率下降0.03。实验数据说明,在对卷积神经网络权重剪枝与参数量化辶后,该算法可以做到在准确率损失较小的情况下,对模型进行冇α压缩,解决了卷积神经网络模型难以部署到移动端的问题。
2022-03-12 21:27:17 2.46MB 神经网络算法
1
很不错的最新介绍深度学习的文献,仅供大家参考,希望更多的深学爱好者上传分享,谢谢!
2022-03-12 17:23:05 3.67MB 深学
1