【CMAP】数据与机器学习问题,39页ppt 标准机器学习方法简介。允许您找到适合您的应用程序的问题/方法。为更深入的学习提供必要的词汇和工具。促进ML的良好实践、解释和重现性。
2021-10-08 23:19:34 5.32MB 机器学习
1
这是主要项目的纯源python版本(不含Flask) 判断篮球投篮 橙色:检测到箍 蓝色:检测到篮球 紫色:不确定的镜头 红色:小姐 绿色:射门进去了 检测到篮球和篮筐 适应曲线的篮球轨迹 连接的篮球检测点
2021-10-08 17:29:30 287.07MB machine-learning computer-vision sports basketball
1
本作品包含cartographer_frontier_detection和rrt_exploration的修改版本。 我们实施了积极的勘探流程,并提高了其稳健性和性能。 带有Cartograher的主动SLAM这项工作包含了cartographer_frontier_detection和rrt_exploration的修改版本。 我们实施了积极的勘探流程,并提高了其稳健性和性能。 论文“基于高效2D Graph-SLAM的主动探测的前沿检测和可到达性分析”(IROS2020)中描述了更多详细信息。 1.要求该软件包已经在带有ROS Melodic的Ubuntu18.04上进行了测试,应该可以在带有ROS Kinetic的Ubuntu16.04上运行。 愚人节
2021-10-08 16:54:00 4.1MB C/C++ Machine Learning
1
PyTorch中高效的视频数据集加载和增强 作者: 如果您发现该代码很有用,请给存储库加注星标。 如果您完全不熟悉使用torch.utils.data.Dataset和torch.utils.data.DataLoader在PyTorch中加载数据集,建议您首先通过或来熟悉它们。 概述:本示例演示VideoFrameDataset的用法 VideoFrameDataset类( torch.utils.data.Dataset的实现)用于easily , efficiently effectively从PyTorch的视频数据集中加载视频样本。 之所以容易,是因为该数据集类可以与自定义数据集一起使用,而无需花费任何努力,也无需修改。 该类仅希望视频数据集在磁盘上具有某种结构,并希望使用.txt注释文件枚举每个视频样本。 可以在下面以及https://video-dataset-loa
2021-10-08 10:29:13 1.3MB machine-learning deep-learning pytorch dataloader
1
亚历克斯 用于表格数据的最先进的自动机器学习python库 适用于任务: 二进制分类 回归 多类分类(正在进行中...) 基准结果 越大越好从 方案 特征 自动数据清理(自动清理) 自动化特征工程(Auto FE) 智能超参数优化(HPO) 特征生成 功能选择 型号选择 交叉验证 优化时限和提前停止 保存并加载(预测新数据) 安装 pip install automl - alex 文件 :rocket: 例子 分类器: from automl_alex import AutoMLClassifier model = AutoMLClassifier () model . fit ( X_train , y_train , timeout = 600 ) predicts = model . predict ( X_test ) 回归: from automl_alex impor
2021-10-08 10:01:50 12.35MB python data-science machine-learning sklearn
1
Machine Learning A Probabilistic Perspective MLAPP(英文版)
2021-10-07 23:46:05 25.07MB Machine Learning
1
CS231n-2017年Spring 这些是我对斯坦福大学的CS231n 2017年Spring课程的解决方案。 我完成了所有作业,以提高自己的Python技能以及对深度学习的理解。 已完成 作业1 作业2(PyTorch和Tensorflow) 作业3(PyTorch和Tensorflow) 未来的工作 额外的信用任务 问题 如果您有任何疑问,我们将很乐意为您解答,只需将其发布为问题,然后我会尽可能答复。
1
免费口语数据集(FSDD) 一个简单的音频/语音数据集,由8kHz的wav文件中的口头录音组成。 修整录音,使其在开始和结束时几乎保持静音。 FSDD是一个开放的数据集,这意味着它将随着时间的推移随着数据的添加而增长。 为了实现可重复性和准确的引用,使用Zenodo DOI和git tags对数据集进行版本控制。 当前状态 6位演讲者 3,000个录音(每个扬声器每个数字50个) 英语发音 组织 文件以以下格式命名: {digitLabel}_{speakerName}_{index}.wav示例: 7_jackson_32.wav 会费 请贡献您的自制录音。 所有录音应为单声道8kHz wav文件,并进行修剪以使静音降至最低。 不要忘记使用发言人元数据更新metadata.py 要添加数据,请按照acquire_data/say_numbers_prompt.py的记录说明进行a
2021-10-07 19:23:06 15.66MB audio machine-learning dataset mnist
1
在本文中,我们将研究单隐藏层多层感知器(MLP)。
1
Basics of Linear Algebra for Machine Learning: Discover the Mathematical Language of Data in Python By 作者: Jason Brownlee Pub Date: 2018 ISBN: n/a Pages: 212 Language: English Format: PDF Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this new laser-focused Ebook written in the friendly Machine Learning Mastery style that you’re used to, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more. This book was designed to be a crash course in linear algebra for machine learning practitioners. Ideally, those with a background as a developer. This book was designed around major data structures, operations, and techniques in linear algebra that are directly relevant to machine learning algorithms. There are a lot of things you could learn about linear algebra, from theory to abstract concepts to APIs. My goal is to take you straight to developing an intuition for the elements you must understand with laser-focused tutorials. I designed the tutorials to focus on how to get things done with linear algebra. They give you the tools to both rapidly understand and apply each technique or operation. Each tutorial is designed to take you about one hour to read through and complete, excluding the extensions and further reading. You can choose to work through the lessons one per day, one per week, or at your own pace. I think momentum is critically important, and this book is intended to be read and used, not to sit idle. I would recommend picking a schedule and sticking to it. The tutorials are divided into five parts: Foundation. D
2021-10-07 19:01:35 1.19MB Mathematics
1