提出了一种基于时频域特征的情绪检测方法。使用Box-and-whisker plot(箱线图)选择最佳特征,然后将其输入SVM分类器,用于训练和测试DEAP数据集,其中考虑了32名不同性别和年龄组的参与者。实验结果表明,该方法对测试数据集的准确率为92.36%。此外,所提出的方法比最先进的方法表现出更高的准确性。
本文利用DEAP数据集预处理的脑电信号对两种维度进行四分类,即效价和觉醒。首先通过应用FFT将数据集中的样本从时域转移到频域,然后提取对情绪识别特别重要的α、β和θ频带。随后,根据每个情绪对应的象限对提取的频带进行平均,并使用平均频带值提取统计特征。然后,对提取的特征进行缩放,并将各种特征组合输入支持向量机分类器(SVM)进行情感识别。据观察,我们的方法使用偏度、峰度和波熵特征预测情绪,准确率为92.36%。与现有的DEAP数据集方法相比,我们提出的模型显示了更好的结果。