为提升求解TSP问题的计算效率和求解精度,针对初始种群构造问题进行研究,提出了域内三角概率选择自适应邻域算法。为使邻域半径能够适应城市的分布情况,设计了一种基于Sigmoid函数的邻域半径自适应函数;为了避免在邻域内盲目随机地选择下一站城市,提出了在邻域内利用三角概率选择模型选择下一个城市。以自动化立体仓库安排出入库作业顺序优化作为TSP研究问题,通过Matlab仿真计算,将该算法和邻域法生成的初始种群进行对比分析,并分别用该算法和随机生成的初始种群作为遗传算法的初始种群进行计算。证明了该算法可快速生成高质量的初始种群,大大提升了求解TSP问题的计算效率和求解精度。
2022-11-13 20:08:19
541KB
论文研究
1