该模型使用基于磁共振成像 (MRI) 的 ResNet-18 模型检测阿尔茨海默病 (AD)。 在该模型中,我们提出了一种在 3D CNN 中利用迁移学习的方法,该方法允许将知识从 2D 图像数据集 (ImageNet) 迁移到 3D 图像数据集。 为了构建 3D ResNet-18,2D ResNet-18 的 2D 过滤器在第三维中扩展为具有 3D 过滤器。 其余层根据新过滤器进行了调整。 然后,将整个 MRI 用于训练 3D ResNet-18,以对每个人做出一个决定。
我们的结果表明,将转移学习引入3D CNN可以提高AD检测系统的准确性。 这种方法在我们的 ADNI 数据集上实现了 96.88% 的准确度、100% 的灵敏度和 93.75% 的特异性。
此文件夹中目前有一些示例图像。 要访问更多图像,您需要将您的应用程序发送到 ADNI ( http://adni.loni
2021-09-17 12:35:57
118MB
matlab
1