对于刚刚开始学习SVM的同学很有帮助哦!快来看看吧
2022-05-21 08:59:27 1005KB SVM的理论基础
1
SVM 支持向量机的python实现
2022-05-20 20:44:33 9KB Python
1
SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。 SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了。。强烈推荐。 还有一个比较通俗的简单版本的:手把手教你实现SVM算法 SVN原理比较复杂,但是思想很简单,一句话概括,就是通过某种核函数,将数据在高维空间里寻找一个最优超平面,能够将两类数据分开。 针对不同数据集,不同
2022-05-20 19:08:13 214KB python python机器学习 python算法
1
3D 三维卷积神经网络CNN(MATLAB).zip 3D 三维卷积神经网络CNN(MATLAB).zip
2022-05-20 19:03:50 5KB 3d cnn matlab 源码软件
实体关系抽取旨在识别网络文本中的实体,并提取出文本中实体之间隐含的关系。研究表明,深度神经网络在实体关系抽取任务上具有可行性,并优于传统关系抽取方法。目前的关系抽取方法大都使用卷积神经网络(CNN)和长短期记忆神经网络(LSTM),然而CNN只考虑连续词之间的相关性而忽略了非连续词之间的相关性。另外,LSTM虽然考虑了长距离词的相关性,但提取特征不够充分。针对这些问题,提出了一种CNN和LSTM结合的实体关系抽取方法,采用3种结合方法进行了实验,验证了该方法的有效性,在F1值上有一定的提升。
1
项目简介 用搭载Keras的tensorflow框架通过卷积神经网络训练模型,使用贝叶斯分类器识别人类的情绪。 根据情绪选择相应的emoji匹配 (更多详情请打开FaceEmotionClassifier.ipynb文件) 项目环境 数据集: Fer2013 ( kaggle挑战赛 ) ,Emoji表情集 神经网络框架: Keras,Tensorflow-gpu 分类器: 基于Opencv-Normal Bayes Classifier(正态贝叶斯分类)训练的贝叶斯分类器 配置环境: python==3.6.0 tensorflow-gpu==1.8.0 keras-gpu==2.1.6 opencv==3.3.1 其他环境详见:environment.yaml
2022-05-20 12:05:32 264.1MB cnn 分类 源码软件 人工智能
纯手写卷积神经网络,未使用任何神经网络框架,使用numpy纯手写卷积神经网络,研究此代码可充分搞懂卷积神经网络原理,本人也是通过此代码亲自走过来的。代码简单。 适用人群:适用于有意愿彻底搞懂卷积神经网络底层原理的同学,适合做该领域研究的学者,较易上手。 阅读建议:对于想学习python的同学,可通过此小项目一边研习python代码语法,一边学习卷积神经网络算法,可以很快入门python,并掌握基础的卷积神经网络算法。
2022-05-19 19:08:29 249KB python 开发语言 人工智能 CNN
svm练习的几个例子 数据挖掘中新方法svm
2022-05-19 11:31:33 28KB svm练习的几个例子
1
基于RISCV64果核处理器的卷积神经网络加速器研究.zip
2022-05-18 21:07:17 18.12MB cnn 综合资源 人工智能 神经网络