【预测模型】基于改进粒子群优化最小二乘支持向量机lssvm求解短期电力负荷预测matlab源码.zip
2021-11-24 09:01:59 897KB 简介
1
为解决常规的基于粒子滤波的目标跟踪算法,使用状态转移分布作为采样粒子的建议分布函数,没有考虑当前的观测值,从而造成定位时间长、定位精度低的问题.采用将最新的观测值融合到采样过程中,利用粒子群优化方法实现目标的跟踪,使得采样粒子集往后验概率密度分布较大的区域移动,从而显著地降低了精确定位所需的粒子数.研究结果表明:改进后的目标跟踪算法性能更优.
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2021-11-23 15:07:01 742KB matlab
1
matlab开发-加速粒子群优化。加速粒子群优化
2021-11-23 09:54:25 5KB 未分类
1
针对支持向量机(SVM)参数难以选择和确定的问题,采用一种新式元启发式优化算法——多元宇宙优化算法(MVO).并在传统多元宇宙优化算法(MVO)的基础上针对TDR值下降速度慢而导致旅行距离增加的问题,提出改进多元宇宙优化算法(IMVO),将改进多元宇宙优化算法用于支持向量机的参数优化和选择问题上.使用UCI标准数据库中的数据进行数值仿真实验.研究结果表明:采用改进多元宇宙优化算法优化的支持向量机有较强的寻优性能,稳定性较好.
1
加速粒子群优化 (APSO) 仅使用全局最佳没有单独的最佳解决方案并减少随机性。 这个演示解决了一个 D=30 维的函数。 扩展它以解决其他函数和优化问题很简单。 详细信息可以在书中找到:Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier Insights, (2014)。 https://www.sciencedirect.com/book/9780124167438/nature-inspired-optimization-algorithms
2021-11-22 16:54:37 2KB matlab
1
基于Python实现的粒子群算法,上传上来方便大家交流学习,算法实现了最基础的粒子群算法,并附带简单的注释,大家可以根据自己的需要进行修改。粒子群算法是群智能一种,是基于对鸟群觅食行为的研究和模拟而来的。假设在鸟群觅食范围,只在一个地方有食物,所有鸟儿看不到食物(不知道食物的具体位置),但是能闻到食物的味道(能知道食物距离自己位置)。最好的策略就是结合自己的经验在距离鸟群中距离食物最近的区域搜索。
1
为避免粒子群算法后期出现早熟收敛,提出一种基于Tent映射的自适应混沌嵌入式粒子群算法。将混沌变量嵌入到标准粒子群算法中,且对参数进行自适应调整。算法采用Tent映射生成的混沌序列来取代基本粒子群算法中的随机数,充分利用了混沌运动的随机性、遍历性和规律性;惯性权重和学习因子采用非线性的自适应调整策略;建立平均粒距与适应度方差相结合的早熟收敛判断机制,并且以混沌搜索的方式来跳出局部最优。测试函数仿真结果表明,该算法具有良好的全局搜索能力,寻优精度较高,鲁棒性好。
2021-11-22 11:20:46 592KB 论文研究
1
【路径规划】基于粒子群算法实现避障规划matlab源码.md
2021-11-21 22:44:15 16KB 算法 源码
1
地球物理标准粒子群算法反演,粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。
2021-11-21 21:39:46 16KB 地球物理 粒子群算法 反演
1