CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-12 09:41:47 15KB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-12 09:39:15 2.67MB matlab
1
御剑WEB目录扫描优化版.zip
2024-09-08 11:50:09 61KB
1
粒子群优化算法是一种群体智能优化算法,其设计灵感来源于自然界中鸟群或鱼群等生物群体的行为模式。在这种算法中,一个由个体组成的群体通过社会交往和信息共享的方式,共同搜索最优解。这种算法通常用于解决优化问题,其基本原理是模拟鸟群捕食的行为,每个粒子代表问题空间中的一个潜在解,通过跟踪个体的经验和群体的经验来动态调整搜索方向和步长。 基本粒子群优化算法包含两个主要的变体:全局粒子群优化算法(g-best PSO)和局部粒子群优化算法(l-best PSO)。全局算法利用群体中最优个体的位置来指导整个群体的搜索方向,具有较快的收敛速度,但在解决复杂问题时容易产生粒子群体在局部最优解附近过早收敛的问题。而局部算法是根据每个粒子的邻域拓扑结构来更新个体最优解,虽然可以细化搜索空间,但可能会减弱群体最优解的聚拢效应,导致收敛速度变慢。 为解决这两种变体的不足,陈相托、王惠文等人提出了GL-best PSO算法。这种新算法试图平衡全局搜索能力和局部搜索能力,通过调整全局和局部最优解的权重来达到优化效果。GL-best PSO算法在保持快速收敛的同时,能够避免粒子过早地陷入局部最优,从而提高解决复杂问题的能力。 GL-best PSO算法的核心是建立一个结合了全局最优解(g-best)和局部最优解(l-best)的粒子更新规则。全局最优解能够指导整个粒子群朝向当前已知的全局最优方向移动,而局部最优解则允许粒子探索其周围的小区域,以增加解空间的多样性。在GL-best PSO模型中,通过中和全局和局部的聚拢效应,力图找到一种既具有快速收敛速度又具有精细搜索能力的平衡点。 为了验证GL-best PSO算法的有效性,作者通过一系列仿真实验来评估该算法的性能,并与几种经典的粒子群优化算法进行比较。仿真实验所使用的测试函数集包含了各种复杂度和特点的优化问题,能够全面考察算法在不同情况下的优化表现。 总结而言,GL-best PSO算法是在粒子群优化算法领域的一次重要改进和创新,它不仅为控制科学与工程、最优化算法等研究提供了新的研究方向,也为解决实际优化问题提供了新的工具和思路。通过这种算法,研究者可以在保证收敛速度的同时,增加算法在搜索空间中的探索能力,提高求解质量,特别是在复杂问题的求解中体现出更优异的性能。
2024-09-07 00:33:39 530KB 首发论文
1
matlab的基于遗传算法优化bp神经网络多输入多输出预测模型,有代码和EXCEL数据参考,精度还可以,直接运行即可,换数据OK。 这个程序是一个基于遗传算法优化的BP神经网络多输入两输出模型。下面我将对程序进行详细分析。 首先,程序读取了一个名为“数据.xlsx”的Excel文件,其中包含了输入数据和输出数据。输入数据存储在名为“input”的矩阵中,输出数据存储在名为“output”的矩阵中。 接下来,程序设置了训练数据和预测数据。训练数据包括前1900个样本,存储在名为“input_train”和“output_train”的矩阵中。预测数据包括剩余的样本,存储在名为“input_test”和“output_test”的矩阵中。 然后,程序对输入数据进行了归一化处理,将其归一化到[-1,1]的范围内。归一化后的数据存储在名为“inputn”和“outputn”的矩阵中,归一化的参数存储在名为“inputps”和“outputps”的结构体中。 接下来,程序定义了神经网络的节点个数。输入层节点个数为输入数据的列数,隐含层节点个数为10,输出层节点个数为输出数据的列数。 然
2024-09-04 13:26:12 890KB matlab 神经网络
1
【文章概述】 本文主要探讨了基于改进遗传算法的FIR数字滤波器的优化设计。在数字信号处理领域,FIR滤波器因其稳定性、线性相位特性以及设计灵活性而广泛应用。然而,传统的设计方法如窗函数法、经验公式和Parks-McClellan算法各有不足,如无法满足多样需求、设计复杂或收敛速度慢。因此,研究人员转向使用遗传算法来优化FIR滤波器的设计。 【改进的遗传算法】 遗传算法是一种模拟生物进化过程的全局优化搜索算法,具有较强的鲁棒性。然而,标准遗传算法在寻找全局最优解时可能会陷入早熟现象,导致收敛速度慢。为了解决这一问题,文章提出了结合BP神经网络的改进遗传算法。这种结合方式利用了遗传算法的全局搜索能力和BP神经网络的局部搜索能力,有效地解决了大规模多极值优化问题,提高了算法的收敛速度和效果。 【FIR数字滤波器】 FIR数字滤波器是一种输出只与过去和现在输入相关的系统,其频率特性可以通过单位冲激响应表示。对于M阶线性相位FIR滤波器,存在特定的对称约束条件。滤波器的优化设计目标是使实际滤波器的频率特性H(w)接近理想滤波器的频率特性Hd(w),通常采用加权的切比雪夫最佳一致逼近准则。该准则通过误差加权函数W(w)来调整通带和阻带的逼近精度。 【优化过程】 文章描述了改进遗传算法在FIR滤波器设计中的具体实现步骤,包括随机生成初始种群,计算个体适应度,以及利用BP神经网络对非最优个体进行优化,生成新一代种群。这个过程不断迭代,直到满足预设的进化代数或误差阈值。 【总结】 通过对遗传算法的改进,结合BP神经网络,设计FIR数字滤波器的效率和精度得到了显著提升。这种方法不仅能够避免标准遗传算法的早熟问题,还能够快速找到接近全局最优的滤波器设计方案,适用于对时间要求严格的系统。这一研究为FIR滤波器设计提供了新的优化策略,对于数字信号处理领域的实践应用具有重要意义。
2024-09-02 19:53:17 105KB 遗传算法
1
在电力系统领域,配电网优化调度是至关重要的一个环节,尤其是在现代能源系统中,随着可再生能源的大量接入,对电网的灵活性需求日益增加。本文将深入探讨“基于IEEE33的配电网优化调度”这一主题,它是一个典型的学术研究案例,旨在通过模拟实际的电力网络来解决电力分配和管理中的问题。 IEEE33节点系统是电力系统分析中广泛使用的标准测试系统之一,它包含了33个节点,包括负荷节点和电源节点。这个系统常被用来检验各种电力系统的控制策略、保护方案和优化方法。在基于IEEE33的配电网优化调度中,研究者通常会考虑如何在满足安全运行和服务质量的前提下,最大限度地利用现有资源,降低运营成本,提高整体效率。 优化调度的目标通常包括最小化发电成本、最大化电能质量、平衡供需、减少线路损耗等。在这个过程中,需要考虑到多种灵活性资源,如储能系统(如电池储能)、分布式能源(如光伏、风能)、需求侧管理(如负荷调节)以及虚拟电厂(集合多个小型能源系统以形成一个协调的整体)。这些灵活性资源可以为电网提供额外的调峰填谷能力,改善频率稳定性,提升系统的可靠性。 在实现优化调度时,一般采用数学模型和算法。其中,线性规划、二次规划、混合整数线性规划等是最常用的工具,它们能够处理复杂的约束条件,如功率平衡、设备容量限制、电压约束等。此外,智能优化算法,如遗传算法、粒子群优化、模糊逻辑和神经网络等也被广泛应用,这些算法具有较强的全局搜索能力和适应性。 调度过程通常包括以下几个步骤:数据采集(获取实时或预测的电力需求、天气情况、设备状态等)、模型构建(建立电网的数学模型并设定目标函数和约束条件)、优化计算(运行优化算法求解最优调度方案)、决策执行(将调度结果发送给相应设备执行)以及反馈调整(根据实际情况调整调度策略)。为了应对不确定性,动态调度和自适应调度策略也是研究的重点。 考虑所有灵活性资源的优化调度是一个复杂的多目标优化问题,需要综合考虑经济效益、环境影响和社会效益。此外,随着物联网和大数据技术的发展,实时数据的获取和处理能力增强,也为优化调度提供了更为精准的基础。因此,基于IEEE33的配电网优化调度不仅是理论研究的热点,也是电力行业实践的重要方向,对于构建智能、绿色、高效的未来电网具有深远的影响。
2024-08-31 15:02:05 11KB
1
【标题】中的“matlabB样条轨迹规划,多目标优化,7次非均匀B样条轨迹规划”涉及的是机器人路径规划领域中的一个重要技术。在机器人运动控制中,轨迹规划是确保机器人按照预设的方式从起点到终点移动的关键步骤。B样条(B-Spline)是一种在数学和工程中广泛使用的曲线拟合方法,它允许我们生成平滑且可调整的曲线。在这里,提到的是7次非均匀B样条,意味着曲线由7次多项式控制,并且节点间距可以不均匀,这样可以更好地适应不同的路径需求。 “基于NSGAII遗传算法,实现时间 能量 冲击最优”指出该规划过程采用了多目标优化。NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种高效的多目标优化算法,它利用种群进化策略来同时优化多个相互冲突的目标函数。在这个案例中,目标是找到一条轨迹,使得它在时间消耗、能量消耗和冲击(通常与舒适度或机械损伤相关)方面达到最优平衡。 【描述】中提到,“换上自己的关节值和时间就能用”,意味着这个MATLAB代码提供了一个通用框架,用户只需输入自己机器人的关节角度序列和期望的规划时间,就可以自动生成符合优化条件的轨迹。代码中的“中文注释”对于初学者来说非常友好,有助于理解每个步骤的功能和意义。 结合【标签】“软件/插件”,我们可以推断这是一个可以应用于MATLAB环境的软件或工具,可能是一个MATLAB函数或者脚本,用户可以下载并直接在MATLAB环境中运行,进行机器人轨迹规划的仿真和优化。 【压缩包子文件的文件名称列表】包括一个HTML文件,可能包含了代码的详细解释或者使用说明;四张图片(1.jpg, 2.jpg, 3.jpg, 4.jpg, 5.jpg)可能展示了轨迹规划的示例或者算法流程图;以及一个名为“样条轨迹规划多目标优化.txt”的文本文件,很可能包含了源代码或规划结果的数据。 这个压缩包提供的资源是一个用MATLAB实现的7次非均匀B样条轨迹规划工具,采用NSGA-II遗传算法对时间、能量和冲击进行多目标优化。用户可以根据自己的关节数据和时间要求,利用这个工具生成最佳的机器人运动轨迹,而且代码有中文注释,便于理解和应用。对于机器人控制和多目标优化领域的学习者和研究者来说,这是一个非常实用的资源。
2024-08-30 15:18:15 426KB
1
ICODE 竞赛常见优化代码行数的方法 在 ICODE 竞赛中,优化代码行数是一个非常重要的方面。通过合理的优化,可以大幅减少代码的行数,提高编程效率和代码可读性。本文将介绍五种常见的优化代码行数的方法,帮助编程选手提高编程水平和竞赛成绩。 一、使用幂运算的知识优化 在编程中,幂运算是一个常用的数学运算符。通过使用幂运算,可以将一些复杂的计算简化为简洁的公式。例如,计算 2 的幂次方可以使用幂运算来实现:2^0 = 1 ; 2^1=2 ; 2^2= 4; 2^3= 8。这种方法可以大幅减少代码的行数,使得代码更加简洁和易读。 公式:(n-1) ^2 +1 这种公式可以应用于各种编程场景中,例如计算数组的索引、计算矩阵的元素等。通过使用幂运算,可以将复杂的计算简化为简洁的公式,大幅提高代码的执行效率。 二、使用数列的通项公式知识优化 数列是编程中常用的数据结构之一。通过使用数列的通项公式,可以将复杂的计算简化为简洁的公式。例如,计算数列 1 2 4 7 的通项公式是:an =n*(n-1)/2+1。这种方法可以使代码更加简洁和易读,同时也可以提高代码的执行效率。 三、巧用 前进为 0 步数的优化 在编程中,有些情况下需要将变量初始化为 0。通过巧用 前进为 0 步数的优化,可以将代码简化为简洁的公式。例如,32 题中可以使用这种方法来优化代码,使得代码更加简洁和易读。 四、重置变量初始值的优化 在编程中,变量的初始值是一个非常重要的方面。通过重置变量初始值,可以将代码简化为简洁的公式。例如,可以将变量的初始值设置为 0 或者其他适当的值,使得代码更加简洁和易读。 五、取消变量的初始值,将增量提前至循环内首行 在编程中,有些情况下需要取消变量的初始值,并将增量提前至循环内首行。这种方法可以将代码简化为简洁的公式,使得代码更加简洁和易读。例如,可以将变量的初始值设置为 0,将增量提前至循环内首行,使得代码更加简洁和易读。 ICODE 竞赛中的代码行数优化是一个非常重要的方面。通过合理的优化,可以大幅减少代码的行数,提高编程效率和代码可读性。本文介绍的五种方法可以帮助编程选手提高编程水平和竞赛成绩。
2024-08-24 09:46:41 1.7MB
1
【优化布局】粒子群算法求解带出入点的车间布局优化问题是一个重要的工业工程与运筹学议题。在现代制造业中,高效的车间布局对于提高生产效率、降低物流成本以及优化工作环境具有重大意义。粒子群算法(Particle Swarm Optimization, PSO)是一种借鉴自然界中鸟群飞行行为的全局优化算法,它在解决复杂优化问题时表现出优秀的性能。 车间布局优化的目标通常是在满足特定约束条件下,如设备尺寸、工艺流程顺序、安全距离等,寻找最优的设备位置排列,以最小化物料搬运成本或最大化生产效率。带出入点的车间布局问题更进一步考虑了物料的进出路径,确保物料流的顺畅和高效。 粒子群算法的核心思想是通过模拟鸟群中个体间的相互作用来搜索解空间。每个粒子代表一个可能的解决方案,其位置和速度会随着迭代过程动态调整。算法中包含两个关键参数:惯性权重(Inertia Weight)和学习因子(Learning Factors)。惯性权重控制粒子维持当前运动趋势的程度,而学习因子则影响粒子跟随自身经验和全局最佳经验的趋向。 在本案例中,【优化布局】基于matlab粒子群算法求解带出入点的车间布局优化问题【含Matlab源码 011期】.mp4文件可能包含了详细的视频教程,讲解如何利用MATLAB编程实现PSO算法解决这一问题。MATLAB作为一款强大的数值计算和数据可视化工具,非常适合进行优化算法的实现和调试。 MATLAB代码可能会定义粒子群的初始化,包括粒子数量、粒子的位置和速度,以及搜索空间的边界。接着,将设定适应度函数,该函数根据布局方案的优劣评价每个粒子的解。在每次迭代过程中,粒子会更新其速度和位置,同时更新局部最优解和全局最优解。 在迭代过程中,粒子会根据自身历史最优位置(个人最佳,pBest)和群体历史最优位置(全局最佳,gBest)调整其运动方向。通过平衡探索与开发,PSO算法能够有效地避免早熟收敛,从而找到更优的布局方案。 当达到预设的迭代次数或满足其他停止条件时,算法结束,返回全局最优解,即最佳的车间布局方案。此视频教程可能还会涉及如何分析和解释结果,以及如何调整算法参数以获得更好的性能。 利用粒子群算法求解带出入点的车间布局优化问题,是将先进的计算方法应用于实际工业问题的典型示例。通过学习和理解这个案例,不仅可以掌握PSO算法的原理和应用,还能加深对车间布局优化问题的理解,为实际生产中的决策提供科学依据。
2024-08-23 21:27:06 3.99MB
1