首先对一般随机系统的渐近特性进行了讨论,然后结合神经网络的特点,应用李雅普诺夫第二方法对一类随机时滞神经网络系统的全局指数稳定性进行了分析,给出了易于判定随机时滞神经网络几乎必然指数稳定性新的代数判据,并给出实例进行仿真实验。
2022-11-22 21:43:17 155KB 工程技术 论文
1
天文导航是以已知准确空间位置、不可毁灭的自然天体为基准,被动探测天体位置,经解算确定测量点所在平台的经度、纬度、航向和姿态等信息。其中以通过对恒星成像进行光电转换获取星点信息进行姿态确定的星敏感器应用最为广泛,他主要包括两个部分:星点提取和星点识别,本文主要关注前者。除了成像器件本身的噪声缺陷,由于空间辐射会导致星敏感器拍摄星图背景灰度均值增大, 背景起伏明显, 另一方面星敏感器探测的是微弱的恒星星光,对杂散光非常敏感,,主要的杂散光源为日光、月光和地气光等杂散辐射源,主要呈现为斜坡噪声。 传统的几何方法主要需要针对某一种情况下的某种应用,当成像器件、光学环境和空间环境等发生变化时,相应的方法也会发生改变。使用全卷积神经网络可在不改变网络结构的情况下,通过更改训练样本,灵活实现星点提取。具体到本文,主要解决三个方面的问题:1不同背景均值下的提取,2散点噪声下的提取,3斜坡噪声下的提取。
1
1.单层感知机 2.多层感知机 3.常见梯度优化 3.常见损失函数 4.多个例子 5.可以直接开会讲,适合学习和汇报 6.常见的激活函数介绍 7.使用房价预测问题介绍了单层感知机模型 8.BP神经网络 9.前馈神经网络 10.梯度优化实例 11.MLP神经网络
2022-11-22 20:26:25 5.43MB 深度学习 机器学习 MLP
1
1.干货满满,整整50页,远远比网络上其他RNN的PPT好,PPT修改过3、4次 2.常见激活函数,损失函数 3.从原理出发讲解LSTM神经网络与传统RNN的区别 4.讲解多个RNN的变体原理细节,GRU、BRNN、BLSTM。 5.RNN的应用场景 6.RNN的背景及其意义
2022-11-22 20:26:24 3.9MB RNN 深度学习 人工智能
1
使用PSO优化RBF神经网络的主要参数中心值c, 宽度σ以及连接权值w。然后将影响输出响应值的多个特征因素作为PSO-RBF神经网络模型的输入神经元, 输出响应值作为输出神经元进行预测测试。
2022-11-22 16:30:34 4KB 径向基神经网络 粒子群算法
1
介绍了知识图谱与图神经网络
2022-11-22 16:24:20 2.94MB 神经网络 知识图谱 人工智能 深度学习
1
伯特·克尔 基于转移学习方法的预训练BERT模型预测组蛋白赖氨酸巴豆酰化(Kcr)位点 所有数据集都在BERT-Kcr /数据中。 所有模型均可在: (1)BERT-Base模型是原始的预训练BERT模型,它包含12个变压器层和768个隐藏的嵌入大小。 (2)BERT-Kcr模型是我们对组蛋白Kcr部位预测的最终模型。 所有代码均在BERT-Kcr /代码中: (1)如果要训练BERT-Kcr模型,请确保已下载上述BERT-Base模型,然后应该: A.格式化您的训练和验证文件,例如BERT-Kcr / code / input文件夹中的文件。 B.修改BERT-Kcr / code / train.sh中的文件夹路径,然后运行: bash train.sh (2)如果要使用BERT-Kcr模型预测组蛋白Kcr站点,请确保已下载上述两个模型,然后应该: A.格式化测试
2022-11-22 15:40:49 13.35MB Python
1
MATLAB实现DNN神经网络多输入多输出预测(完整源码和数据) DNN深度神经网络/全连接神经网络,数据为多输入多输出预测数据,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
这是一个基于CNN卷积神经网络的天气识别案例分享,可以运行实现~,同时里面包含对应的数据集。
2022-11-22 14:02:13 98.48MB CNN 天气识别 天气数据集 卷积神经网络
这是一个基于VGG网络架构的cat and dog分类实战的小项目,里面包含所有源代码,同时也含有对应的用到的数据集。模型已经经过优化,同时含有部分注释便于理解,欢迎下载交流。
2022-11-22 14:02:12 180.23MB VGG CNN 卷积神经网络 分类算法