支持向量机的新版本libSVM3.22 快速安装 安装教程见本人博客。
2021-07-03 14:58:06 827KB libsvm3.22 安装
1
基于餐饮评论数据的情感分析(主要涉及到短文分类,分别使用朴素贝叶斯、支持向量机、Xgboost 进行情感值的二分类) 本文主要通过情感分析来挖掘评论中有价值的信息。 获取所研究数据,即大众点评餐饮评论数据,通过分词去除停用词、词性标注等操作进行数据预处理,然后通过机器学习的方法来分析餐饮评论的情感极性,来进一步挖掘评论中有价值的信息。 使用python的结巴分词工具对中文文本进行分词。可用TF-IDF、词袋方法提取文本数据的特征。然后使用机器学习的方法进行文本分类,可以运用朴素贝叶斯(NB)、支持向量机(SVM)、随机森林等算法。查询了资料,考虑了速度、容错性、变量筛选能力、共性容忍度等因素,初步设想选用SVM算法。 ===》SVM算法优于NB 优于随机森林
2021-07-02 20:02:33 10.92MB 情感分析
从三个层次理解SVM,通俗易懂,切中主题,值得学习
2021-06-27 14:13:16 1.33MB SVM 机器学习
1
采用的是美国西储大学轴承数据中心的滚动轴承数据,贝叶斯优化后的准确率高达99%,也包含了和遗传算法以及网格搜索优化支持向量机的对比!希望可以帮助到大家!!!给两个积分意思一下就行了
1
在线支持向量机回归matlab程序源码
2021-06-25 16:06:44 31KB matlab 在线 支持向量机 回归
1
随着人口老龄化趋势的加快,建立预测阿尔茨海默氏病(AD)的模型至关重要。 在本文中,我们对1157名受访者进行了调查。 通过使用三种机器学习方法(BP神经网络,SVM和随机森林)分析结果,我们可以得出它们在AD预测中的准确性,以便我们可以比较解决AD预测的方法。 其中,随机森林是最准确的方法。 此外,为了结合这些方法的优势,我们基于这三种机器学习模型构建了一个新的组合预测模型,事实证明,该模型比单独的模型更准确。 最后,我们总结了生活方式与AD之间的联系,并为老年人提供了一些建议,以帮助他们预防AD。
1
模式识别的作业,包括线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,支持向量机
2021-06-22 23:49:24 2.48MB 模式识别
1
python实现SVM支持向量机代码CSV文件。elativeLayout xmlns:android= http: //schemas.android.com/apk/res/android android:layout_width= fill_parent android:layout_height= f...
2021-06-22 17:14:09 147B python
1
mySVM-MATLAB:这是我使用MATLAB实现的支持向量机(SVM)和转换型SVM(TSVM)的实现
2021-06-20 15:40:02 1.31MB matlab support-vector-machines MATLABMATLAB
1