天气状况识别对交通运输安全、环境、气象等领域有重要意义。在各种产业向智能化转型的技术背景下,基于人工智能技术研究一种高效的天气自动识别方法,不仅能解决传统天气判别准确率低的问题,还能实现天气判别的实时性,有效地提高应对各种天气状况的处理能力。卷积神经网络(Convolutional Neural Network,简称CNN)是深度学习中的一种重要网络结构,它通过引入卷积层,池化层以及较深的网络层数,实现对图像高层语义特征的感知,提升图像分类效果。本文基于卷积神经网络架构,针对传统天气识别方法较难判断的可见光图像天气状况(多云、雨天、晴天、日出)。
2023-01-05 17:30:24 94.76MB 人工智能 图片识别
1
神经网络DGL框架中文详细文档
2023-01-05 17:30:19 8.52MB 图计算 图神经网络 深度学习 pytorch
1
4.2.5基于神经网络的知识表示与推理 1.基于神经网络的知识表示 基于神经网络系统中知识的表示方法与传统人工智能系统中所用的方法(如产生式、框架、语义网络等)完全不同,传统人工智能系统中所用的方法是知识的显式表示,而神经 网络中的知识表示是一种隐式的表示方法。在这里,知识并不像在产生式系统中那样独立地表示为每一条规则,而是将某一问题的若干知识在同一网络中表示。例如,在有些神经网络系统中,知识是用神经网络所对应的有向权图的邻接矩阵及阈值向量表示的,如对图4.10所示的异或逻辑的神经网络来说,其邻接矩阵为
2023-01-05 16:58:57 558KB 计算智能
1
目前解释得比较清晰的一篇文章,对深度学习,卷积神经网络原理有帮助
1
《A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks》,论文原文
2023-01-05 13:28:33 2.86MB 脉冲神经网络 BPTT IEEE
1
神经网络能以任意精度逼近非线性函数,以神经网络为基础的时间序列预测模型能很好地反映信息的非线性发展趋势。该文在分析传统BP网络缺点的基础上,用具有良好全局搜索能力的遗传算法来改进神经网络。详细讨论了GA算法的优化神经网络初始权值和阈值的思想和理论。在阐述预测方法同时,用具体例证分析了GA-BP网络预测的性能和特点。结果表明,基于GA-BP神经网络在预测精度和适应性方面高于传统的BP神经网络
2023-01-04 21:13:59 336KB 自然科学 论文
1
rnn-实验 循环神经网络实验
2023-01-04 21:12:57 161KB Python
1
MATLAB实现LSTM长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
对SOM网络进行了详细的介绍,对于学习自组织特征映射网络具有很好的帮助
2023-01-04 16:32:15 861KB 神经网络 SOM
1
MATLAB实现DBO-BP多输入单输出回归预测(完整源码和数据) 螳螂算法优化BP神经网络多输入回归预测,数据为多输入回归数据,输入2个特征,输出1个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。