管道泄漏检测和定位在管道的安全生产中占有重要的位置。本文将用小波包分解技术提取的管道泄漏检测系统特征信号作为神经网络的输人,建立管道运行状态的神经网络分类器,根据输出对管道的运行状态进行识别。利用小波变换特性提取压力传感器的信号奇异点,根据负压力波定位法对管道泄漏点定位,仿真结果验证了该方法的有效性。
2023-01-09 10:56:03 262KB 自然科学 论文
1
建立了一种基于神经网络的交通流量动态预测模型,分别采用BP神经网络和径向基网络(RBF)建立了预测模型,给出了数据预处理方法和预测模型评价指标.仿真结果表明该交通流量预测方法的有效性,结果分析得出径向基网络能够更加快速有效的进行城市交通流预测。
2023-01-07 20:51:28 322KB 神经网络 交通流 预测模型
1
对不同类型的皮肤癌进行分类 有任何疑问请联系 - josemebin@gmail.com
2023-01-07 12:15:31 1.29MB matlab
1
交通标志识别 在这个项目中,我使用卷积神经网络对交通标志进行分类。 具体来说,我训练了一个模型,用于根据“德国交通标志对交通标志进行分类。 我使用TensorFlow进行模型开发,并在GPU上对其进行了训练。 分几个步骤: 加载数据集 探索,总结和可视化数据集 设计,训练和测试模型架构 使用模型对新图像进行预测 分析新图像的softmax概率 完整的项目代码可以在找到 数据集摘要与探索 1.数据集的基本摘要。 此步骤的代码包含在的3d code cell中 我使用了pandas库来计算交通标志数据集的摘要统计信息: 训练示例数= 34799 测试例数= 12630 图像数据形状=(32,32,3) 班级数量= 43 2.数据集的探索性可视化。 该步骤的代码包含在的5th code cell中。 这是数据集的探索性可视化。 它是显示数据分布方式的条形图。 我们看到分布不均。
2023-01-06 20:41:07 145KB JupyterNotebook
1
人工神经网络的最后的实验。用了两种方法,bp算法和 rbf 径向基神经网络
2023-01-06 15:36:15 21.53MB 人工神经网络 实验报告 bp rbf
1
1.2人工神经元模型 人工神经元是人工神经网络操作的基本信息处理单位,是神经网络设计的基础。 人工神经元模型可以看成是由三种基本元素组成: 一组连接 一个加法器 一个激活函数 生物神经网络 人类的大脑大约有1.41011个神经细胞,亦称为神经元。每个神经元有数以千计的通道同其它神经元广泛相互连接,形成复杂的生物神经网络。生物神经网络以神经元为基本信息处理单元,对信息进行分布式存储与加工,这种信息加工与存储相结合的群体协同工作方式使得人脑呈现出目前计算机无法模拟的神奇智能。为了进一步模拟人脑的形象思维方式,人们不得不跳出冯.诺依曼计算机的框架另辟蹊径。而从模拟人脑生物神经网络的信息存储、加工处理机制入手,设计具有人类思维特点的智能机器,无疑是最有希望的途径之一。 人工神经网络 用数学和物理方法从信息处理的角度对人脑生物神经网络进行抽象,并建立某种简化模型,就称为人工神经网络Artificial Neural Network,缩写 ANN)。人工神经网络远不是人脑生物神经网络的真实写照,而只是对它的简化、抽象与模拟。这是因为到目前为止,人类对神经系统内的电信号和化学信号是怎样被用来处理信息的只有十分粗浅的认识。揭示人脑的奥妙不仅需要各学科的交叉和各领域专家的协作,还需要测试手段的进一步发展。尽管如此,这种简化模型的确能反映出人脑的许多基本特性。目前已提出上百种人工神经网络模型。
2023-01-06 15:21:10 1.57MB 神经网络
1
pytorch 迁移学习实战,天气识别
2023-01-05 17:30:24 172.87MB 迁移学习 pytorch 深度学习 神经网络
1
天气状况识别对交通运输安全、环境、气象等领域有重要意义。在各种产业向智能化转型的技术背景下,基于人工智能技术研究一种高效的天气自动识别方法,不仅能解决传统天气判别准确率低的问题,还能实现天气判别的实时性,有效地提高应对各种天气状况的处理能力。卷积神经网络(Convolutional Neural Network,简称CNN)是深度学习中的一种重要网络结构,它通过引入卷积层,池化层以及较深的网络层数,实现对图像高层语义特征的感知,提升图像分类效果。本文基于卷积神经网络架构,针对传统天气识别方法较难判断的可见光图像天气状况(多云、雨天、晴天、日出)。
2023-01-05 17:30:24 94.76MB 人工智能 图片识别
1
神经网络DGL框架中文详细文档
2023-01-05 17:30:19 8.52MB 图计算 图神经网络 深度学习 pytorch
1
4.2.5基于神经网络的知识表示与推理 1.基于神经网络的知识表示 基于神经网络系统中知识的表示方法与传统人工智能系统中所用的方法(如产生式、框架、语义网络等)完全不同,传统人工智能系统中所用的方法是知识的显式表示,而神经 网络中的知识表示是一种隐式的表示方法。在这里,知识并不像在产生式系统中那样独立地表示为每一条规则,而是将某一问题的若干知识在同一网络中表示。例如,在有些神经网络系统中,知识是用神经网络所对应的有向权图的邻接矩阵及阈值向量表示的,如对图4.10所示的异或逻辑的神经网络来说,其邻接矩阵为
2023-01-05 16:58:57 558KB 计算智能
1