出了一个全新的混合算法并命名为微粒群差分算法,该算法在标准微粒群算法的基础上结合了差分进化算法用于求解约束的数值和工程优化问题。传统的标准微粒群算法由于其种群单一性容易陷入局部最优值,针对这一缺点利用差分进化算法中的变异、交叉、选择3个算子来更新每次迭代每个粒子新生产的位置以使粒子跳出局部优值。融合了标准微粒群算法和差分进化算法优点的混合算法加速了粒子的收敛速度。为了避免惩罚因子的选择对实验结果的影响,采取了可行规则法来处理约束优化问题。最后将微粒群差分算法用于5个基准函数和两个工程问题,并与其他算法作了比较,试验结果表明,微粒群差分算法算法具有很好的精准性、鲁棒性和有效性。
2023-03-15 09:15:37 849KB 混合算法
1
构造PSO改进BP,同时采用PID控制算法优化
2023-03-13 18:05:56 13KB PID/PSO/BP
1
算法优化
2023-03-07 17:01:31 5KB 算法
1
经验模态分解划分高频、低频和残差分类用粒子群优化算法对支持向量机进行预测
2023-03-04 18:32:00 651KB matlab
1
自适应粒子群优化是一种优化算法,它是粒子群优化(Particle Swarm Optimization,PSO)的一种变体。与传统的PSO不同,APSO使用自适应策略来调整算法的参数,以提高算法的性能和收敛速度。 APSO的主要思想是根据群体的收敛情况动态调整算法的参数。APSO的核心算法与PSO类似,由粒子的速度和位置更新规则组成。每个粒子通过与局部最优解和全局最优解比较来更新自己的位置和速度。 APSO的另一个关键之处是学习因子的自适应调整。在每个迭代中,APSO会计算每个粒子的适应度值。如果适应度值的方差较小,则学习因子的值会变小,以便更加收敛到最优解。相反,如果适应度值的方差较大,则学习因子的值会变大,以便更好地探索解空间。
2023-02-27 15:51:35 3KB pso 算法优化
1
基于粒子群PSO优化算法的ELM网络,并对比优化后的EML的预测性能+含代码操作演示视频 运行注意事项:使用matlab2021a或者更高版本测试,运行里面的Runme.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体可观看提供的操作录像视频跟着操作。
2023-02-23 17:14:29 994KB 算法 网络 PSO优化 ELM网络
SwaNN是基于粒子群优化(使用Python包PySwarms(https://pyswarms.readthedocs.io/en/latest/)的神经网络的基本框架。zip文件包含SwaNN.py中的主要程序,大约30个示例:-分类-回归-时间序列预测如果有人对此类感兴趣,我需要一些关于类构建的帮助(我既不是Python专家也不是OOP专家)...在Google Colab中:https://colab.research .google.com / drive / 1u6SOydDUThUrhTfaic2NiyDhh1ZGRJsH?usp = sharing新增功能:-重新组装并清洁了jupyter笔记本
2023-02-19 11:29:07 5.31MB 开源软件
1
粒子群算法PSO源代码 MATLAB
2023-02-08 20:11:47 247KB 粒子群算法 pso matlab
1
提供一个自用的粒子群算法和例子,希望能有所帮助。粒子群优化算法(Partical Swarm Optimization PSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。由于PSO操作简单、收敛速度快,因此在函数优化、 图像处理、大地测量等众多领域都得到了广泛的应用。 随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决,主要有以下几种发展方向。
2023-02-07 16:24:37 4KB 粒子群算法 优化算法
1