本篇文章主要介绍了python使用递归、尾递归、循环三种方式实现斐波那契数列,非常具有实用价值,需要的朋友可以参考下 在最开始的时候所有的斐波那契代码都是使用递归的方式来写的,递归有很多的缺点,执行效率低下,浪费资源,还有可能会造成栈溢出,而递归的程序的优点也是很明显的,就是结构层次很清晰,易于理解 可以使用循环的方式来取代递归,当然也可以使用尾递归的方式来实现。 尾递归就是从最后开始计算, 每递归一次就算出相应的结果, 也就是说, 函数调用出现在调用者函数的尾部, 因为是尾部, 所以根本没有必要去保存任何局部变量. 直接让被调用的函数返回时越过调用者, 返回到调用者的调用者去。尾递归就是把当
2021-11-28 14:07:12 108KB num python python
1
前言 之前刚刚入门python爬虫,有大概半个月时间没有写python了,都快遗忘了。于是准备写个简单的爬虫练练手,我觉得网易云音乐最优特色的就是其精准的歌曲推荐和独具特色的用户评论,于是写了这个抓取网易云音乐热歌榜里的热评的爬虫。我也是刚刚入门爬虫,有什么意见和问题欢迎提出,大家一起共同进步。 废话就不多说了~下面来一起看看详细的介绍吧。 我们的目标是爬取网易云中的热歌排行榜中所有歌曲的热门评论。 这样既可以减少我们需要爬取的工作量,又可以保存到高质量的评论。 实现分析 首先,我们打开网易云网页版,如图: 点击排行榜,然后点击左侧云音乐热歌榜,如图: 我们先随便打开一个歌曲,
2021-11-27 11:06:13 1.06MB num python3 python爬虫
1
这个是C#大作业,写作业很用心,写了很久,所以留存一下。不是现在的是之前的的期末作业,现在才想着整理一下 实现功能: 1、商家登录;客户的登录、注册。 2、商家界面实现了对菜单的增、删、改、查;还有订单的查看、查询、结账(删除订单)、查看已结账订单、关闭;退出系统。 3、用户界面实现了菜单的查看,查询,新建订单,选择餐桌,保存订单,增加菜品,退出。 C#语言实现在线点餐系统,具体功能如下图 登录界面 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data;
2021-11-26 09:37:32 299KB num 点餐系统 系统
1
前言:前一篇文章大概说了EM算法的整个理解以及一些相关的公式神马的,那些数学公式啥的看完真的是忘完了,那就来用代码记忆记忆吧!接下来将会对python版本的EM算法进行一些分析。 EM的python实现和解析 引入问题(双硬币问题) 假设有两枚硬币A、B,以相同的概率随机选择一个硬币,进行如下的抛硬币实验:共做5次实验,每次实验独立的抛十次,结果如图中a所示,例如某次实验产生了H、T、T、T、H、H、T、H、T、H,H代表正面朝上。 假设试验数据记录员可能是实习生,业务不一定熟悉,造成a和b两种情况 a表示实习生记录了详细的试验数据,我们可以观测到试验数据中每次选择的是A还是B b
2021-11-25 17:36:51 172KB em算法 num python
1
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets('mnist_data/',one_hot=True) #注意这里用了one_hot表示,标签的形状是(batch_size,num_batches),类型是float,如果不用one_hot,那么标签的形状是(batch_size,),类型是int num_classes=10 batch_size=64 hidden_dim1=32 hidden_dim2=64
2021-11-25 08:24:37 44KB cell num rnn
1
程序运行,产生如下结果,然后进程终止,导致这一结果的原因很有可能是内存爆炸。 当两个较大的 (e.g., 10000*10000 维)ndarray 做运算(加法,or 乘法)时,很容易出现这样的结果. 解决办法: 大多数情况下,这种大矩阵都是稀疏的。尽可能地利用稀疏计算的方式,例如稀疏矩阵,或者只计算非 0 位置的值。 如果都是整数运算,可以设置 dtype=int,而非 dtype=float, 可以省下不少空间。 linux 系统下,使用 top 命令,可以很容易地看到内存(%MEM) 的使用情况。 # 代码段 1, true_similarity_matrix 是 int
2021-11-24 15:51:27 66KB mp num numpy
1
pytorch之GRU模型 疫情期间,宅家无聊,参加了由和鲸社区、Datawhale、伯禹人工智能学院等单位联合发起的免费公益学习活动,主要利用pytorch进行深度学习,时间比较紧凑,没怎么学懂,得多花一点时间,代码都是向大佬借鉴的,错误之处,恳请指正,我就是个搬运工,仅做学习打卡使用,不喜勿喷哈哈哈哈。 import numpy as np import torch from torch import nn, optim import torch.nn.functional as F import sys sys.path.append(../input/) import d2l_ja
2021-11-19 17:30:59 65KB “人造太阳”计划 c num
1
本专栏是书《深度学习入门》的阅读笔记一共八章: 第一章深度学习中的Python基础。主要讲解了深度学习将要用到的python的基础知识以及简单介绍了numpy库和matpoltlib库,本书编写深度学习神经网络代码仅使用Python和numpy库,不使用目前流行的各种深度学习框架,适合入门新手学习理论知识。 第二章感知机。主要介绍了神经网络和深度学习的基本单元感知机。感知机接收多个输入,产生一个输出,单层感知器可以实现与门,或门以及与非门,但是不能实现异或门,异或门的实现需要借助多层感知机,这也就是说,单层感知机只能表示线性空间,而非线性空间的表示需要借助多层感知机。 第三章神经网络——基于n
2021-11-19 15:19:07 94KB mp num numpy
1
本文实例为大家分享了使用RNN进行文本分类,python代码实现,供大家参考,具体内容如下 1、本博客项目由来是oxford 的nlp 深度学习课程第三周作业,作业要求使用LSTM进行文本分类。和上一篇CNN文本分类类似,本此代码风格也是仿照sklearn风格,三步走形式(模型实体化,模型训练和模型预测)但因为训练时间较久不知道什么时候训练比较理想,因此在次基础上加入了继续训练的功能。 2、构造文本分类的rnn类,(保存文件为ClassifierRNN.py) 2.1 相应配置参数因为较为繁琐,不利于阅读,因此仿照tensorflow源码形式,将代码分成 网络配置参数 nn_conf
2021-11-19 15:18:30 123KB num python python
1
笔记整理 代码整理 L2 范数正则化(regularization) %matplotlib inline import torch import torch.nn as nn import numpy as np import sys sys.path.append(/home/kesci/input) import d2lzh1981 as d2l # L2范数正则化 def fit_and_plot_pytorch(wd): # 对权重参数衰减。权重名称一般是以weight结尾 net = nn.Linear(num_inputs, 1) nn.init
2021-11-17 14:31:48 765KB c num OR
1