灰狼算法(GWO)优化最小二乘支持向量机分类预测,GWO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 14:43:02 88KB 支持向量机
1
蛇群算法(SO)优化最小二乘支持向量机分类预测,SO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 14:35:39 88KB 支持向量机
1
MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测 基本介绍 1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测; 2.运行环境为Matlab2018b; 3.输入多个特征,分四类预测; 4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹; 5.可视化展示分类准确率。 模型描述 SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。 具体流程如下: 数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。 特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。 AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。 模型评估:对预测结果进行评估。 模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoos
2023-12-11 12:48:07 1KB matlab 支持向量机
1
为了建立直觉模糊向量子空间的统一理论,采用直觉模糊集截集理论和模糊点xa与直觉模糊集A的邻属关系,并利用三值Lukasiewicz蕴涵,给出了(α,β)-直觉模糊向量子空间的定义,由此可以得到16种直觉模糊向量子空间。研究结果表明:(∈,∈)-直觉模糊向量子空间和(∈,∈∨q)-直觉模糊向量子空间是其中两种非常有意义的直觉模糊向量子空间,给出了(∈,∈)-直觉模糊向量子空间和(∈,∈∨q)-直觉模糊向量子空间之间的关系,并得出了(∈,∈∨q)-直觉模糊向量子空间的相关性质。该成果突破了对原有直觉模糊向量子空间的认识,从而为直觉模糊分析理论研究打下基础。
2023-12-10 15:03:34 924KB 行业研究
1
VB源码,用于输出汉字可以消除汉字放大的时候的模糊和锯齿现象
2023-12-09 13:37:58 3KB 输出放大 汉字放大
1
麻雀算法(SSA)优化最小二乘支持向量机分类预测,SSA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-07 13:30:14 87KB 支持向量机
1
北方苍鹰算法(NGO)优化最小二乘支持向量机回归预测,NGO-LSSVM回归预测,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-12-02 15:53:26 175KB 支持向量机
1
粒子群算法(PSO)优化最小二乘支持向量机分类预测,PSO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-11-29 09:48:49 87KB 支持向量机
1
为了解决软件无线电系统中多种调制方式之间切换的问题,提出了一种基于支持向量机的多类数字 调制方式识别算法 .该算法通过提取有效的特征向量以区分不同的调制方式,并基于支持向量机和判决树分 类思想,将特征向量映射到高维空间中加以分类,解决了样本在低维空间中的非线性不可分问题,避免了判 决门限的确定,与传统的神经网络方法相比,具有更好的泛化推广能力 .仿真结果表明,在具有加性带限高斯 噪声的环境下,信噪比大于等于10 dB时,识别正确率大于90%.
2023-11-23 17:54:29 16KB 工程技术 论文
1
在高信噪比处理域构造新的用于调制识别的高阶统计量幅值特征,与传统特征相比保留了更多的分类信息,适合干扰较大多种调制模式并存的环境。基于联合特征向量有效提高了识别性能,用窗口平滑抑制截获信号中的噪声,对识别器输入特征向量样本规范化以提高处理速度。分别基于欧氏距离分类方法和改进算法的神经网络识别器进行仿真实验,证明了采用联合特征向量和优化方法在低信噪比干扰更大的信道条件下能区分更多的调制类型(MASK、MPSK、MFSK、MQAM),且平均调制识别率提高200%,算法效率也得到明显提高。
2023-11-23 17:52:34 237KB
1