多说话者语音的目标说话人提取和验证 此处的代码是说话人提取,其中鉴于目标说话人的特征,只会提取目标说话人的声音。 在论文2)中,我们使用小型网络从目标说话者的不同话语中共同学习目标说话者的特征。 您也可以使用i-vector或x-vector网络替换网络。 如果您对语音分离感兴趣,希望将所有说话者的声音都融入到混音中,请转到 文件 请引用: 徐成林,饶伟,肖雄,Ch昂崇和李海洲,“使用网格LSTM对单个通道语音进行分离,并限制了其对钢琴水平的渗透性,”,Proc。 见ICASSP 2018,第6-10页。 徐成林,饶伟,Ch昂崇和李海洲,“基于幅度和时间谱近似损失的说话人提取神经网络的优化”,Proc.Natl.Acad.Sci.USA。 见ICASSP 2019,第6990-6994页。 饶饶,徐成林,郑昂松和李海洲,“多说话者说话人验证的目标说话人提取”,Proc.Natl.A
1
自己是从去年7月份开始做关于FPGA的验证工作,写这个文档的目的是主要是对过去一年的学习做一个总结,另外秉着互联网“我为人人 人人为我”的精神,将自己学习过程中的收获写出来和需要的人共享。 本文主要介绍了涉及FPGA验证的基本知识,包括了SystemVerilog语言、UVM(通用验证方法学)、Questasim软件以及批处理脚本四部分内容,第五部分给出了工程实例,文章中对各个知识点讲解都比较泛,很多知识点仅仅是点到为止,需要查阅其他资料进行更进一步的学习。本文章主要是面向初次涉及PFGA验证和IC验证的同学,通过本文章的阅读,能够对SV、UVM、Questasim的应用以及整个验证流程有个大概的了解,结合网络上其他资料,能够快速的入门。
2021-12-05 10:59:10 611KB Verification UVM SV Questasim
1
D向量 这是经过GE2E损失训练的扬声器嵌入的PyTorch实现。 有关GE2E丢失的原始文章可以在这里找到: 用法 import torch import torchaudio wav2mel = torch . jit . load ( "wav2mel.pt" ) dvector = torch . jit . load ( "dvector.pt" ). eval () wav_tensor , sample_rate = torchaudio . load ( "example.wav" ) mel_tensor = wav2mel ( wav_tensor , sample_rate ) # shape: (frames, mel_dim) emb_tensor = dvector . embed_utterance ( mel_tensor ) # shape: (emb
1
最全面的验证书,包括SV,UVM,受约束的随机,断言,功能覆盖率,CDC验证,低功功耗验证,形式验证,ESL验证,软硬件联合验证,数模混合验证,SOC互连验证等
2021-11-24 00:15:31 14.08MB asic soc design verification
1
Overview Synopsys VC Verification IP for USB provides a comprehensive set of protocol, methodology, verification and productivity features, enabling users to achieve rapid verification of USB Host, Device and Hub designs supporting USB 3.2 dual lane, Super speed plus, SuperSpeed, High Speed, Full Speed and Low Speed modes. VC VIP is based on next generation architecture and implemented in native System Verilog/UVM, which eliminates the need for language translation wrappers that affects performance and ease-of-use. VIP can be integrated, configured and customized easily with minimal effort. Testbench development is accelerated with the assistance of built-in verification plans, functional coverage, example tests and comprehensive collection of sequences.
2021-11-17 00:23:36 647KB USB VIP VC Verification
1
自动泊车代码Matlab MATLAB-AV验证 该项目不仅作为验证自动驾驶汽车(AV)的场景生成验证框架,还特别是决策制定部分[],也是佛罗里达理工学院FLPolyVF或佛罗里达理工学院验证框架的一部分,该研究旨在完全验证自动驾驶汽车是否符合SAE []定义的5级自动驾驶。 随着视音频验证领域的扩展,越来越多的人将其视为一项几乎不可能完成的任务[],尤其是由于其复杂的性质而没有进行仿真,因此这就是FLPolyVF的用武之地。通过创建一个强大的AV验证框架来解决这个问题,该框架从芯片验证中汲取了灵感,而芯片验证行业已经对复杂系统进行了更长的验证。 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件 要运行该项目,您将需要最新的MATLAB迭代以及一些工具箱,所有这些工具箱都在下面列出: MATLAB R2019b 自动驾驶工具箱 您可以从[]获取最新的MATLAB。 可以在设置MATLAB的同时安装工具箱,或者可以继续设置并运行代码,这些代码将提示您下载所需的工具箱,并从那里打开相应的链接。 配置 要在您自己的目录中设置项目,请将其下载到MATL
2021-11-13 09:05:20 3.38MB 系统开源
1
密集连接的时延神经网络 在我们的论文 的密集 (INTERSPEECH 2020)中,密集连接的时延神经网络(D-TDNN)的PyTorch实施。 什么是新的 :warning: [2021-02-14]我们在添加了一个impl选项,现在您可以选择: 'conv':通过F.conv1d实现TDNN。 'linear':通过F.unfold和F.linear实现TDNN。 检查此以获取更多信息。 请注意,尚未完成“ conv”的预训练模型。 [2021-02-04]此存储库中的TDNN(默认实现)比nn.Conv1d慢,但我们采用它是因为: 此仓库中的TDNN还用于创建nn.Conv1d(非对称填充)不完全支持的F-TDNN模型。 nn.Conv1d(dilation> 1,bias = True)训练缓慢。 但是,这里我们不使用F-TDNN,我们总是在D-TDNN中设置bias = F
1
使用暹罗网络进行脱机签名验证 使用暹罗卷积神经网络进行脱机签名验证。 数据集=> 上面的数据集包含160个个体的印地语签名和100个个体的孟加拉语签名。 我只使用了印地语签名数据集。 参考:
1
coverage-cookbook-complete-verification-academy Candence Academy官方coverage文档
2021-11-04 09:30:54 2.04MB systemverilo function cov code
1
I will first introduce the necessary concepts and tools of verification, then I'll describe a process for planning and carrying out an effective functional verification of a design. I will also introduce the concept of coverage models that can be used in a coveragedriven verification process. It will be necessary to cover some VHDL and Verilog language semantics that are often overlooked or oversimplified in textbooks intent on describing the synthesizeable subset. These unfamiliar semantics become important in understanding what makes a wellimplemented and robust testbench and in providing the necessary control and monitor features. Once these new semantics are understood in a familiar language, the same semantics are presented in new verification-oriented languages. I will also present techniques for applying stimulus and monitoring the response of a design, by abstracting the physical-level transac-tions into high-level procedures using bus-functional models. The architecture of testbenches built around these bus-functional models is important to create a layer of abstraction relevant to the function being verified and to minimize development and maintenance effort. I also show some strategies for making testbenches selfchecking. Creating random testbenches involves more than calling the random() function in whatever language is used to implement them. I will show how random stimulus generators, built on top of busfunctional models, can be architected and designed to be able to produce the desired stimulus patterns. Random generators must be easily externally constrained to increase the likelihood that a set of interesting patterns will be generated. Behavioral modeling is another important concept presented in this book. It is used to parallelize the implementation and verification of a design and to perform more efficient simulations. For many, behavioral modeling is synonymous with synthesizeable or RTL modeling. In this book, the term "behavioral" is used to
2021-11-03 14:34:32 35.19MB HDL Testbench
1