在matlab中使用deepLearnToolbox实现卷积神经网络的简单教程
2022-01-12 21:12:22 574KB matlab CNN 卷积神经网络
1
1、Mnist_cnn.py 该脚本文件 用TensorFlow框架 实现CNN卷积神经网络处理Mnist手写数字识别数据集,准确率达到99.21%; 2、Mnist_cnn_tensorboard.py 该脚本文件在Mnist_cnn.py的基础上实现可视化。
2022-01-10 19:07:51 5KB TensorFlow CNN Mnist Python3
本人用CNN卷积神经网络编写的手写字体识别,大家可以下载下来参考下,研究生课程的作业
2022-01-01 22:38:54 2.48MB CNN 卷积神经网络 手写字体识别
1
卷积神经网络经典代码,采用tensorflow框架,能够实现对cifar10数据集的经典分类。
2021-12-31 11:57:50 34KB CNN 卷积神经网络 tensorflow
1
The first CNN appeared in the work of Fukushima in 1980 and was called Neocognitron. The basic architectural ideas behind the CNN (local receptive fields,shared weights, and spatial or temporal subsampling) allow such networks to achieve some degree of shift and deformation invariance and at the same time reduce the number of training parameters. Since 1989, Yann LeCun and co-workers have introduced a series of CNNs with the general name LeNet, which contrary to the Neocognitron use supervised training. In this case, the major advantage is that the whole network is optimized for the given task, making this approach useable for real-world applications. LeNet has been successfully applied to character recognition, generic object recognition, face detection and pose estimation, obstacle avoidance in an autonomous robot etc. myCNN class allows to create, train and test generic convolutional networks (e.g., LeNet) as well as more general networks with features: - any directed acyclic graph can be used for connecting the layers of the network; - the network can have any number of arbitrarily sized input and output layers; - the neuron’s receptive field (RF) can have an arbitrary stride (step of local RF tiling), which means that in the S-layer, RFs can overlap and in the C-layer the stride can differ from 1; - any layer or feature map of the network can be switched from trainable to nontrainable (and vice versa) mode even during the training; - a new layer type: softmax-like M-layer. The archive contains the myCNN class source (with comments) and a simple example of LeNet5 creation and training. All updates and new releases can be found here: http://sites.google.com/site/chumerin/projects/mycnn
2021-12-28 17:21:22 1.07MB CNN 卷积神经网络
1
包含cifar10数据集,CNN卷积网络源码,OpenMV IDE2.2,PPT
2021-12-27 21:02:07 430.92MB cifar10数据集 CNN卷积网络源码 OpenMVIDE2.2
1
用Tensorflow搭建CNN卷积神经网络,实现MNIST手写数字识别-附件资源
2021-12-13 09:19:36 106B
1
matlab的egde源代码卷积神经网络实用 由Andrea Vedaldi和Andrew Zisserman撰写的牛津视觉几何学小组的实用计算机视觉。 从doc/instructions.html开始。 请注意,此实用程序需要编译(包括)MatConvNet库。 这应该自动发生(请参阅setup.m脚本),但是请确保在实验室计算机上编译成功。 包装内容 该实践包括以下四个文件中组织的四个练习: exercise1.m第1部分:CNN基础 exercise2.m第2部分:衍生物和反向传播 exercise3.m第3部分:学习小型CNN exercise4.m第4部分:学习CNN识别字符 exercise5.m 5.m-第5部分:使用预先训练的CNN 实用程序在MATLAB中运行并使用。 该软件包包含以下MATLAB函数: extractBlackBlobs.m :从图像中提取黑色斑点。 tinycnn.m :实现一个非常简单的CNN。 initializeCharacterCNN.m :初始化CNN以识别字符。 decodeCharacters.m :可视化字符CNN的输出。 imsm
2021-12-09 10:34:25 1.32MB 系统开源
1
利用卷积神经网络对mnist数据集进行分类,代码采用python进行编写,并有详细的注释,且文件自带mnist数据集。用户需要搭建好tensorflow环境配合python即可运行。
2021-12-07 19:36:30 21.22MB CNN 卷积神经网络
1
本篇博客tensorflow1.7,整个项目源码: 引言 本次博客将分享Udacity无人驾驶纳米学位的另一个项目,交通标志的识别。 本次项目实现主要采用CNN卷积神经网络,具体的网络结构参考Lecun提出的LeNet结构。参考文献: 项目流程图 本项目的实现流程如下所示: 代码实现及解释 接下来我们就按照项目流程图来逐块实现,本项目数据集: 如果打不开,则有备用链接: #import important packages/libraries import numpy as np import tensorflow as tf import pickle import matplotlib.pyplot as plt import random import csv from sklearn.utils import shuffle from tensorflow.contrib.laye
2021-12-07 17:09:18 11.48MB JupyterNotebook
1