自定义步骤控件封装库
2024-08-08 17:23:15 19KB 自定义控件
1
C# 开发 Step 步骤条控件详解 本篇文章主要介绍了用 C# 来实现一个 Step 控件的方法步骤,具有很好的参考价值。下面跟着小编一起来看下吧。 StepEntity 类 在实现 Step 控件之前,需要定义一个 StepEntity 类来存储步骤条节点的信息。StepEntity 类的成员变量包括 Id、StepName、StepOrder、StepState、StepDesc 和 StepTag 等,分别用于存储步骤条节点的唯一标识符、步骤条名称、步骤条顺序、步骤条状态、步骤条描述和步骤条标签等信息。 StepViewer 用户控件 在定义了 StepEntity 类之后,需要定义一个名为 StepViewer 的用户控件。StepViewer 用户控件继承自 UserControl类,并且包含一个 ListDataSource 属性,用于存储 StepEntity 对象的集合。在 StepViewer 用户控件的 Paint 方法中,使用 Graphics 画笔和 Brush 画刷来绘制步骤条。 ListDataSource 属性 在 StepViewer 用户控件中定义了一个 ListDataSource 属性,用于存储 StepEntity 对象的集合。ListDataSource 属性使用 BrowsableAttribute 和 CategoryAttribute 来控制其可见性和分类。 Paint 方法 在 StepViewer 用户控件的 Paint 方法中,使用 Graphics 画笔和 Brush 画刷来绘制步骤条。Paint 方法首先判断 ListDataSource 属性是否为空,如果不为空,则计算步骤条的宽度和高度,并绘制步骤条的线条和节点。 绘制步骤条 在绘制步骤条时,需要使用 Graphics 画笔和 Brush 画刷来绘制步骤条的线条和节点。步骤条的线条使用 Pen 对象来绘制,而步骤条的节点使用 Brush 对象来绘制。 结论 本篇文章主要介绍了用 C# 来实现一个 Step 控件的方法步骤,包括定义 StepEntity 类、StepViewer 用户控件和 Paint 方法等。通过本篇文章,读者可以学习到如何使用 C# 来实现一个 Step 控件,并掌握相关的技术和知识。 相关知识点 * C# 语言基础 * Windows 窗体应用程序开发 * 用户控件开发 * Graphics 画笔和 Brush 画刷 * Pen 对象和 Brush 对象 * 数据绑定和数据源 * 控件的事件处理和绘制 扩展阅读 * C# 语言基础知识 * Windows 窗体应用程序开发入门 * 用户控件开发指南 * Graphics 画笔和 Brush 画刷使用手册 * Pen 对象和 Brush 对象使用手册
2024-08-08 16:56:25 83KB
1
在本项目中,我们主要探讨的是如何利用C#编程实现上位机与STM32单片机之间的通信,以此来控制全彩LED灯。STM32单片机因其高性能、低功耗的特点,在嵌入式系统中广泛应用。而C#作为.NET框架的一部分,常用于开发用户界面友好、功能丰富的桌面应用程序,因此它被选为上位机的编程语言。 STM32单片机通过串口(UART)进行通讯,这是一种成本低、易于实现的通信方式。在STM32中,我们需要配置串口的相关参数,如波特率、数据位、停止位和校验位,并开启串口中断,以便在接收到数据时能够及时响应。此外,全彩LED灯通常由RGB三色LED组成,通过调节红绿蓝三基色的亮度比例,可以实现各种颜色的变化。 在C#上位机编程中,我们可以使用System.IO.Ports命名空间中的SerialPort类来实现串口通信。需要设置相同的串口参数,然后打开串口,监听串口数据。当接收到数据时,上位机会解析这些指令,比如亮度值或颜色变化命令,然后将它们封装成特定格式的指令发送回STM32。 为了实现LED灯的控制,我们需要在STM32端编写相应的驱动程序,这通常包括对GPIO引脚的操作,以及可能的PWM(脉宽调制)控制。GPIO引脚图会提供每个LED连接的物理位置,这对于硬件布局和故障排查至关重要。在C#端,我们可以设计用户界面,让用户通过滑块或颜色选择器来控制LED的亮度和颜色,然后将这些控制信号转换成串口指令发送。 源代码是学习和理解整个系统工作原理的关键。STM32的源代码会包含初始化串口、处理中断、解析并执行命令等功能,而C#的源代码则涉及串口通信类的实现、用户界面事件处理以及指令的编码和解码。通过阅读和分析这些代码,开发者可以深入理解如何实现两者间的有效通信。 这个项目涵盖了嵌入式系统、单片机编程、上位机应用开发、串口通信等多个IT领域的知识。对于想在物联网或者智能家居领域发展的开发者来说,这是一个很好的实践项目,不仅可以提升编程技能,还能加深对硬件控制和通信协议的理解。同时,通过这个案例,我们也可以看到软件与硬件交互的复杂性和魅力,这对于跨领域开发能力的培养大有裨益。
2024-08-08 14:26:33 18.31MB STM32
1
在给定的压缩包文件中,我们关注的主要知识点围绕C#编程、HALCON机器视觉算法、SMT贴片机操作、相机标定、MARK点校正以及贴合补偿算法。以下是对这些关键概念的详细解释: 1. **C#编程**:C#是一种面向对象的编程语言,广泛用于开发Windows桌面应用、游戏、移动应用以及Web应用。在这个项目中,C#被用来编写控制SMT贴片机和处理图像识别的源代码。 2. **Halcon机器视觉算法**:HALCON是MVTec公司开发的一种强大的机器视觉软件库,提供了丰富的图像处理和模式匹配功能。在SMT(Surface Mount Technology)领域,Halcon的模板匹配功能用于识别PCB板上的元件,确保准确无误地进行贴片。 3. **SMT贴片机**:SMT贴片机是电子制造中的关键设备,用于自动将表面贴装器件(SMD)精确地贴附到PCB板上。它依赖于高精度的定位和视觉系统来完成任务。 4. **相机标定**:相机标定是机器视觉中的重要步骤,目的是获取相机的内参和外参,以便将图像坐标转换为真实世界坐标。这有助于提高定位和测量的准确性,确保SMT贴片机能够正确识别和放置元件。 5. **MARK点4点校正**:MARK点是PCB板上的特殊标识,用于帮助相机定位。4点校正是一种几何校准方法,通过识别四个MARK点来确定相机与PCB板之间的相对位置和旋转,从而提高贴片精度。 6. **2点补偿**:这是一种简化的校准方法,通常用于调整因机器或环境变化导致的微小误差。通过两个参考点,可以计算出必要的补偿值,确保贴片机的贴装位置更准确。 7. **贴合补偿算法**:在SMT过程中,由于各种因素(如机械误差、温度变化等),实际贴装位置可能与理想位置有偏差。贴合补偿算法通过对这些偏差进行预测和修正,确保元件能准确贴合到PCB板上。 这些技术的综合应用使得SMT贴片机能够高效、精确地完成工作,提高了电子制造的自动化水平和产品质量。压缩包中的源程序和算法实现提供了深入学习和理解这些概念的实际案例,对于从事相关工作的工程师来说是一份宝贵的资源。
2024-08-08 10:57:42 10.29MB halcon 模板识别
1
基于C#+ArcObjects10.8开发ArcGIS Desktop10.8的加载项插件的简单实例。最近为了开发个在arcgis中查看国土云的举证db的插件在学习研究arcobjects,学习中的一个简单实例,目的是实现鼠标选择方向点时生成临时的方向线。
2024-08-07 10:45:35 2MB
1
在IT行业中,CANOE是一种广泛使用的工具,主要用于汽车电子系统的通信网络仿真,如CAN(Controller Area Network)和LIN(Local Interconnect Network)等协议。BLF(CAN Object Editor Binary File Format)是CANOE生成的一种二进制日志文件格式,用于记录在仿真过程中的通信数据。而ASC(ASCII)文件则是一种文本格式,方便人类阅读和处理。 本项目标题"CANOE blf转asc格式源码及exe C#实现"表明,这是一个用C#语言编写的程序,其功能是将CANOE的BLF格式日志文件转换为易于理解的ASC文本格式,无需安装CANOE软件本身。这为那些需要分析和处理BLF文件但不拥有或不想安装CANOE的用户提供了便利。 在C#中实现这个转换涉及到以下几个关键知识点: 1. **文件读取与解析**:需要读取BLF文件的内容。C#的`System.IO`命名空间提供了一系列方法,如`FileStream`、`BinaryReader`,用于读取二进制文件。解析BLF文件通常涉及到理解CANOE的内部结构和数据格式,这可能需要查阅CANOE的官方文档或相关资料。 2. **数据解析与转换**:BLF文件包含的是二进制数据,可能包括CAN帧的ID、DLC(Data Length Code)、数据字节等信息。C#代码需要解析这些信息,并将其转化为ASC格式,例如,CAN帧的ID可能以十六进制形式表示,DLC和数据字节也可能需要转换。 3. **文件写入**:转换后的ASC数据需要写入新的文本文件。C#的`StreamWriter`类可用于创建和写入文本文件。ASC文件通常是以纯文本形式表示的CAN帧,每行代表一个帧,包含帧ID、DLC以及数据字节等。 4. **异常处理**:在进行文件操作时,必须考虑可能出现的异常情况,如文件不存在、权限问题等。C#的`try-catch`语句块可以用来捕获并处理这些异常,确保程序的健壮性。 5. **命令行参数处理**:如果提供的是可执行文件(exe),那么很可能需要通过命令行参数来指定输入和输出文件。C#的`System.Environment`类和`args`数组可以用来获取和处理这些参数。 6. **程序打包与部署**:完成源码编写后,可以使用Visual Studio或其他C#编译工具将代码编译成exe文件,便于用户直接运行。同时,考虑到跨平台需求,可能还需要处理依赖库和设置配置文件。 这个项目提供的源码和exe文件,对于那些希望理解和处理CANOE日志的开发者来说,是一个实用的工具。它不仅简化了转换流程,也降低了对CANOE软件的依赖,使得更多的人能够参与到CAN网络数据分析中来。
2024-08-02 08:50:46 9.63MB canoe
1
​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直连PLC并读取PLC数据​C#直
2024-08-01 10:04:50 12.82MB
1
【匈牙利算法详解】 匈牙利算法,也称为Kuhn-Munkres算法或KM算法,是一种用于解决分配问题的有效算法。在计算机科学中,它主要用于解决匹配问题,例如分配任务给工人、分配学生到宿舍或者寻找二分图的最大匹配。这种算法的主要目标是在一个有向无环图(DAG)中找到一个完美匹配,即每个节点都能找到一条边与之相连,而没有多余的边。 匈牙利算法的核心思想是通过调整增广路径来逐步完善匹配,直至达到最大匹配。其基本步骤包括: 1. **初始化**:为图中的每条边赋予一个初始权重,通常设为无穷大,然后为每个未匹配的节点分配一个虚边,权重为零。 2. **寻找增广路径**:寻找当前匹配下的增广路径,即从某个未匹配节点出发,经过一系列未饱和边(未达到其最大容量的边)到达另一个未匹配节点的路径。 3. **调整权重**:找到增广路径后,更新边的权重以消除增广路径。具体操作是沿增广路径反方向更新边的权重,使得从源节点到目标节点的所有边的权值都相等。 4. **改进匹配**:根据调整后的权重,可以找到新的匹配。这一步通常使用DFS(深度优先搜索)或BFS(广度优先搜索)来完成。 5. **重复过程**:如果还能找到增广路径,则重复步骤2-4;否则,当前的匹配就是最大匹配。 【C#实现匈牙利算法】 在C#中实现匈牙利算法,首先需要定义数据结构来存储图的信息,例如使用二维数组或邻接矩阵表示边的关系,以及一个一维数组记录当前匹配状态。接着,你需要实现寻找增广路径和调整权重的函数。这些函数可能涉及到回溯搜索、权重更新和匹配状态的更新。在C#代码中,你可以使用`for`循环和递归等控制流结构来实现这些功能。 在压缩包文件`hungarian-algorithm-n3-master`中,应该包含了实现匈牙利算法的C#源代码。这些源代码可能会包含类、方法和示例用法,展示了如何构建问题实例并调用算法来找到最大匹配。分析和理解这些代码可以帮助你深入理解匈牙利算法的内部工作原理,以及如何在实际应用中使用它。 匈牙利算法是解决分配问题的强大工具,特别是在处理大规模数据时,它的O(n^3)时间复杂度相比其他算法具有一定的优势。而在C#中实现这一算法,可以使你能够将这个理论概念应用于各种实际的编程项目中。通过阅读和研究提供的源代码,你将能够更熟练地运用匈牙利算法来解决实际的匹配问题。
2024-07-30 16:43:01 10KB
1
【标题解析】 "基于C# UI Automation自动化测试自动化测试示例工程" 是一个使用C#编程语言构建的项目,其核心目标是实现UI(用户界面)自动化测试。UI Automation是.NET Framework提供的一种用于测试Windows应用程序用户界面的技术,它允许开发者编写自动化脚本来模拟用户与界面元素的交互,如点击按钮、输入文本等。 【描述详解】 描述中提到的“15个按钮示例”涵盖了自动化测试中的常见操作,这些操作包括: 1. **打开程序**:启动被测应用程序,确保程序能够正确加载并运行。 2. **关闭程序**:在测试完成后,自动关闭应用程序,清理测试环境。 3. **编辑文本**:模拟用户在文本框中输入文字,验证输入功能是否正常。 4. **点击按钮**:触发按钮事件,检查按钮的功能是否按预期工作。 5. **展开列表**:对于下拉列表或树形结构,自动展开并选择特定项,验证数据展示和交互。 6. **遍历控件**:搜索和遍历界面中的所有控件,可能用于检查控件的排列、可见性或状态。 这些示例展示了如何利用C# UI Automation库来控制和验证各种UI组件的行为,这对于软件开发过程中的回归测试和持续集成尤其有用,可以大大提高测试效率并减少手动测试的工作量。 【标签解析】 “c#”:这是Microsoft开发的一种面向对象的编程语言,常用于Windows应用开发和Web服务。在这个上下文中,它是实现自动化测试的工具。 “ui”:用户界面,指的是用户与软件进行交互的部分,包括窗口、按钮、菜单等元素。 “自动化测试”:通过预定义的脚本模拟用户操作,自动执行测试用例,以检查软件的功能和性能。 【文件名称列表】 "WindowsFormsApp1" 这个文件名表明这是一个基于Windows Forms的应用程序,Windows Forms是.NET Framework用于创建桌面应用程序的一个组件。在C#中,可以使用Windows Forms来设计图形用户界面,而这个"1"可能是版本号或者是项目中的第一个示例。 综合以上信息,我们可以推断这个项目是一个教学或演示资源,旨在教导开发者如何使用C#和UI Automation进行自动化测试,特别是针对Windows桌面应用的测试。用户可以通过分析和运行这些示例代码,了解自动化测试的基本原理和实践方法,进一步提升他们的测试自动化能力。
2024-07-30 15:16:05 71KB ui 自动化测试
1
友情提醒:在tao宝下载本资源是旧版的,注意不要受骗 当前资源在后续更新会以私信的方式发送,已经购买资源的朋友请不要取关,谢谢了 帖子地址: https://blog.csdn.net/qq_38693757/article/details/131223450?spm=1001.2014.3001.5502 具体的介绍请看帖子,这里文字放不下了 2023.07.25 添加了本地黑名单文件夹功能 2023.12.30 进行了大幅度的优化,同时改动了一部分功能,具体更新内容参考帖子 2024.01.05 优化了部分代码 2024.01.13 优化了部分代码 2024.06.18 添加了更新界面 修复了 UNIX/Linux FTP 服务器 无法下载的bug 2024.06.20 添加了配置文件生成工具,更新工具读取配置文件来检测那些文件需要更新,大大的提高了更新速度 有疑问欢迎私信我
2024-07-29 18:54:49 5.9MB wpf
1