使用稀疏自编码器实现高光谱图像异常探测 其中包含: 1、训练部分 train_SAE_pytorch.py 2、探测部分 Anomaly_detection.py 3、用到的读取数据集的函数 datasets.py 4、圣地亚哥机场高光谱数据集 sandiego_plane.mat
2022-07-30 09:08:28 3.06MB 高光谱图像 异常探测 图像处理 python
1
核稀疏表示分类(KSRC)是稀疏表示分类的非线性扩展,显示了其在高光谱图像分类中的良好性能。 但是,KSRC仅考虑无序像素的光谱,而没有在空间相邻数据上合并信息。 本文提出了一种对空间光谱核稀疏表示的相邻滤波核,以增强对高光谱图像的分类。 这项工作的新颖性在于:1)提出了空间光谱KSRC框架; 2)通过核特征空间中的邻域滤波来测量空间相似度。 在几个高光谱图像上的实验证明了该方法的有效性,并且所提出的相邻滤波内核优于现有的空间光谱内核。 此外,所提出的空间光谱KSRC为将来的发展打开了广阔的领域,在其中可以轻松地合并滤波方法。
2022-07-28 10:42:19 1.12MB Classification; kernel sparse representation;
1
高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验,以验证所提出的基于LRMR的HSI恢复方法的性能。
2022-07-23 22:34:24 1.5MB Go Decomposition (GoDec); hyperspectral
1
对KSC和PU数据集进行1D光谱特征学习,2D空间特征学习和3D谱空联合特征学习,所用环境为tensorflow-GPU-1.5.0 keras2.1.6 资源包含KSC和PU两个高光谱数据集
2022-07-17 10:06:03 87.4MB python cnn 分类 文档资料
1
分类代码示例(C4.5、libsvm),帮助理解高光谱遥感图像的分类。
2022-07-15 09:34:43 24.93MB LibSVM matlab 高光谱分类
1
该文件用于提取混合物中的成分信息。 您需要的是光谱图像的数据集。 您可以获得的结果包括混合物成分的空间分布和成分的纯光谱。 化学计量学中类似的算法更强大,称为多元曲线分辨率(MCR)。 外部约束也用于强制算法输出期望的结果。 随意进行任何更改。
2022-07-14 11:22:05 2KB matlab
1
高光谱图像混合像元分解算法.pdf
2022-07-12 14:08:24 1.1MB 文档资料
高光谱图像特征提取与分类算法研究.pdf
2022-07-12 14:08:23 4.09MB 文档资料
高光谱图像融合算法研究.pdf
2022-07-12 14:08:23 7.53MB 文档资料
高光谱遥感图像的端元递进提取算法.pdf
2022-07-12 14:08:22 754KB 文档资料