母线负荷预测对于电网安全稳定调度具有重要意义,但母线负荷随机波动性较强,其负荷类型因供电区域的差异而不同。为此,提出一种基于极限梯度提升(XGBoost)与Stacking模型融合的短期母线负荷预测方法。基于XGBoost建立多个母线负荷预测元模型,组合构成Stacking模型融合的元模型层,连接一个XGBoost模型对元模型进行融合,整体构成综合预测系统,并采用粒子群优化算法优化系统参数。通过对具有不同负荷属性的220 kV母线进行实例分析,验证了所提方法的有效性与适用性。
1
输电线路故障评估和分类数据,及相关数据的负荷预测(含python程序).zip
2022-04-24 15:06:46 1.27MB python 分类 开发语言 数据挖掘
电力系统短期电力负荷预测数据集(时间间隔1h,4.8w多条数据)2015-2020 特征包括:天气变量,如气温、相对湿度、降水量和风速。
2022-04-22 17:05:41 22.29MB 电力系统 短期负荷预测 电气工程
历史负荷和温度数据(从2009年到2017年),泰国的五个不同地区收集的:中部,曼谷和大都会,南部,北部和东北部。基于LSTM的RNN设计的短期电力负荷预测系统。内含matlab代码和数据!!!
2022-04-22 17:05:41 3.97MB lstm rnn 人工智能 深度学习
基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预
2022-04-21 21:05:27 1.22MB 神经网络 cnn lstm 深度学习
针对用BP神经网络进行预测时权值难以确定的问题,提出了一种基于将灰色理论与BP神经网络相结合的预测算法。采用数量研究法,选取重庆市某供电局1999年到2006年的售电量作为样本,利用不同的灰色模型对样本进行预测,再选出预测的最优值对BP网络进行训练,最后用已训练好的BP网络对样本数据进行预测。经实例预测表明:灰色理论与BP网络相结合的预测精度与单一的预测模型相比有了明显的改进,该算法在理论和实践应用中都是可行的,并为电力部门的生产运行和规划提供了重要的参考。
2022-04-20 15:10:35 771KB 行业研究
1
完整数据和完整代码
2022-04-19 19:15:23 17.89MB 天池ai 电力 负荷预测
1
特征包括:天气变量,如气温、相对湿度、降水量和风速。数据集来源CND
2022-04-19 19:07:54 47.59MB 电力系统短期负荷预测
基于BP神经网络的电力负荷预测研究,内容包含了部分MATLAB代码实现
2022-04-18 21:05:46 340KB 神经网络 matlab 机器学习 人工智能