数据挖掘导论(第二版)第4章:贝叶斯分类器.pptx
2022-10-05 15:22:02 1.12MB 数据挖掘导论(第二版)
1
1.利用所提供的训练数据,完成基本最小错误率的贝叶斯分类器的设计,并用测试数据进行测试,计算出错误率。 2.再使用最小风险判别准则进行分类,实验中假设风险参数矩阵为L,该数据可根据实际损失的情况需要进行修改。 这里给定损失参数矩阵为:[0,2,1; 3,0,4; 1,2,0] 损失参数矩阵可以调整. 3.改变损失矩阵对分类结果是否会有影响?给出不同的两组损失矩阵得到的分类结果。 4.使用python语言来完成实验
2022-09-29 16:14:48 3KB 模式识别 python
1
主要适用于机器学习初学者,掌握基础理论; 可以在高质量数据集上面,修改测试代码,更好的掌握 naive Bayes 分类器理论和实际应用; 理解分类器的实际价值和局限性所在。
2022-08-30 15:05:10 1.95MB 机器学习 贝叶斯分类器
1
本资源为《机器学习实战》第四章基于概率论的分类方法:朴素贝叶斯学习笔记,资源中总结和输入的所有例程代码,并给出注释。资源免费下载
2022-08-04 18:08:17 968KB 机器学习 朴素贝叶斯 分类算法
1
基于相关系数的加权朴素贝叶斯分类算法_张明卫,分享给大家学习~
2022-07-29 10:40:56 999KB 贝叶斯
1
小时间序列在宏观经济领域普遍存在, 对小时间序列的分类预测也有着广泛的需求.由于小时间序列 蕴含的信息不充分, 有效地提高小时间序列分类预测的可靠性非常困难, 目前也缺少这方面的研究.针对这种情况, 在基于引入平滑 参数的高斯核函数估计属性边缘密度的基础上, 建立用于小时间序列分类预测的动态朴素贝叶斯分类器, 并给出平滑参数的同步和异步优化方法.实验 结果表明, 优化能够显著提高小时间序列分类预测的准确性.
1
adaboost 演示demo(基于Matlab,学习算法包括决策树、神经网络、线性回归、在线贝叶斯分类器等),动态GUI显示学习过程、vote过程等
2022-07-19 22:12:48 13KB 机器学习
1
基于协同过滤的电子商务推荐系统极易受到托攻击,托攻击者注入伪造的用户模型增加或减少目标对象的推荐频率,如何检测托攻击是目前推荐系统领域的热点研究课题.分析五种类型托攻击对不同协同过滤算法产生的危害性,提出一种特征选择算法,为不同类型托攻击选取有效的检测指标.基于选择出的指标,提出两种基于监督学习的托攻击检测算法,第一种算法基于朴素贝叶斯分类;第二种算法基于k近邻分类.最后,通过实验验证了特征选择算法的有效性,及两种算法的灵敏性和特效性.
1
朴素贝叶斯分类之垃圾短信识别.7z
2022-07-13 16:04:54 156KB 数据集
关于朴素贝叶斯分类算法的改进.pdf
2022-07-11 09:11:34 1.22MB 文档资料