PyTorch中的分子自动编码
2021-12-10 21:52:30 51.01MB Python开发-机器学习
1
基于递归神经网络的自动编码器 PyTorch实现, 目录: 项目结构: 项目结构基于以下 ├── agents | └── rnn_autoencoder.py # the main training agent for the recurrent NN-based AE ├── graphs | └── models | | └── recurrent_autoencoder.py # recurrent NN-based AE model definition | └── losses | | └── MAELoss.py # contains the Mean Absolute Error (MAE) loss | | └── MSELoss.py # contains the Mean Squared Error (MSE) loss ├── datasets
2021-12-10 15:59:37 146KB Python
1
去噪声代码matlab 使用自动编码先验()进行图像还原 抽象的: 我们建议将去噪自动编码器网络作为解决图像恢复问题的先决条件。 我们基于以下关键观察结果:最佳去噪自动编码器的输出是真实数据密度的局部均值,而自动编码器误差(训练后的自动编码器的输出与输入之间的差)是均值偏移向量。 我们使用此均值偏移矢量的大小(即到本地均值的距离)作为自然图像先验的负对数似然。 对于图像恢复,我们通过反向传播自动编码器误差,使用梯度下降来最大化可能性。 我们方法的主要优势在于,我们不需要为不同的图像恢复任务训练单独的网络,例如使用不同内核的非盲反卷积,或在不同放大倍数下的超分辨率。 我们演示了使用相同的自动编码先验技术进行非盲解卷积和超分辨率的最新结果。 有关方法的详细信息,请参见。 这段代码在Matlab中运行,您需要安装。 内容: :包括一个用于非盲图像去模糊的示例和一个用于单图像超分辨率的示例。 :实现MAP功能以实现非盲图像去模糊。 使用Matlab的帮助功能来了解输入和输出参数。 :为单张图像超分辨率实现MAP功能。 使用Matlab的帮助功能来了解输入和输出参数。 :使用我们训练有素的DAE
2021-12-02 17:07:32 2.5MB 系统开源
1
AAE-PyTorch 对抗自动编码器(基本/半监督/监督)
2021-11-25 19:52:37 9KB Python
1
变分自编码器 (VAE) + 迁移学习 (ResNet + VAE) 该存储库在 PyTorch 中实现了 VAE,使用预训练的 ResNet 模型作为其编码器,使用转置卷积网络作为解码器。 数据集 1. MNIST 数据库包含 60,000 张训练图像和 10,000 张测试图像。 每个图像均保存为28x28矩阵。 2. CIFAR10 数据集包含10个类别的60000个32x32彩色图像,每个类别6000个图像。 3. Olivetti 人脸数据集 脸数据集由 40 个不同主题的 10 张 64x64 图像组成。 模型 模型包含一对编码器和解码器。 编码器 将 2D 图像x压缩为较低维度空间中的向量z ,该空间通常称为潜在空间,而解码器 接收潜在空间中的向量,并在与编码器输入相同的空间中输出对象。 训练目标是让encoder和decoder的组合“尽可能接近identity”。
2021-11-19 02:51:19 10.88MB vae resnet transfer-learning variational-autoencoder
1
dbn matlab代码deep_autoencoder 深度信念网络自动编码器 这种深层信念的网络自动编码器基于Ruslan Salakhutdinov和Geoff Hinton()以及相关的MATLAB代码()的工作。 我已将其翻译为PyTorch,并合并了GPU计算以使其运行更快。 操作很简单。 使用多个受限的Boltzmann机器层初始化DBN对象,例如dbn = DBN(visible_units = 512,hidden_​​units = [256,128])将初始化具有512个输入神经元和两个RBM层的DBN对象,其中一个具有256个输出神经元,其中一个具有128个输出神经元。 然后对网络进行预训练,例如dbn.pretrain(data,labels,num_epochs),其中data是火炬。大小的张量(num_samples x num_dimensions),labels是火炬.size的标签的张量(num_samples),以及num_epochs是整数,表示要预训练每个RBM层多少个时期。 接下来,对网络进行微调,例如dbn.fine_tuning(data
2021-11-10 16:48:47 5KB 系统开源
1
自动编码器异常检测 使用自动编码器检测mnist数据集中的异常 说明 异常被定义为偏离标准,很少发生并且不遵循其余“模式”的事件。只有在我们的类标签中存在巨大的不平衡这一事实,问题才会复杂化。要完成此任务,自动编码器使用两个组件:编码器和解码器。编码器接受输入数据并将其压缩为潜在空间表示形式。 解码器然后尝试从潜在空间重构输入数据,当以端到端的方式训练时,网络的隐藏层将学习强大且甚至能够对输入数据进行去噪的滤波器。用一个数字,并告诉它如下重建: 我们希望自动编码器在重建数字方面做得非常好,因为这正是自动编码器受过训练的工作-如果我们要查看输入图像和重建图像之间的MSE,我们会发现现在让我们假设我们给自动编码器提供了一张大象的照片,并要求它重建它: 由于自动编码器以前从未见过大象,更重要的是从未接受过重建大象的训练,因此我们的MSE很高,如果重建的MSE很高,那么我们可能会有异常值。 数
2021-11-10 10:28:00 2KB
1
数据融合matlab代码基于卷积自动编码器的多光谱图像融合 概述 该存储库包含运行基于深度学习的全色锐化方法以在遥感应用中融合全色和多光谱图像所必需的代码。 有关该算法的详细信息,请参见我们的论文。 用法:泛锐化 基于卷积自动编码器的多光谱图像融合是基于卷积自动编码器体系结构的一种基于深度学习的多光谱图像融合新方法。 有关更多信息,请参见以下文章: A. Azarang,HE Manoochehri,N。Kehtarnavaz,基于卷积自动编码器的多光谱图像融合,IEEE Access。 怎么跑 首先,您需要使用Data_Generation.m来准备要在我们的锐化框架中使用的数据。 我们仅使用4波段多光谱(MS)数据进行研究。 (B,G,R,NIR频段) Add path of your data 该路径应包含MS和PAN​​colour(PAN)数据。 另外,它可以是.mat文件(MAT文件)。 Importing the MS and PAN data 运行Data_Generation.m之后,将3个文件保存到该目录: Input.m // it is used to serv
2021-11-09 19:11:24 521KB 系统开源
1
基于对称显着性的对抗攻击自动编码器。 安装 > git clone https://github.com/BravoLu/SSAE.git > cd SSAE > pip -r install requirements.txt 开始使用 演示版 我们在上部署了一个resnet18模型,您可以使用目录./images/original_examples/中的图像进行测试。
2021-11-09 17:09:50 37.67MB JupyterNotebook
1
matlab精度检验代码微型计算机 基于Chen等人的论文“用于域自适应的边缘化堆叠降噪自动编码器”,对边缘化堆叠降噪自动编码器(mSDA)的实现和使用。 al(2012)。 本文提供了MATLAB代码,并在处提供了MATLAB和Python的实现(后者是对MATLAB代码的严格翻译)。 mSDA的此实现基于作者提供的示例代码以及本文中的方程式。 最终,该Python实现比其提供的实现稍有优化,并且希望包含更多说明性的变量名和注释。 此外,尽管在本文中作者提供了主要mSDA算法的字面MATLAB实现,但他们也进行了描述,但没有给出对高维数据的更快逼近的实现。 该项目还包含此近似值的实现。 所有这些都在msda.py中完成。 最后,为了演示mSDA的功能,该项目包含一个简单的示例应用程序:从几个类别中进行文档分类,即众所周知的20个新闻组数据集。 数据预处理(将原始数据转换为单词包)在process_data.py中从头开始,并且stop_words.txt中包含一个常用的停用词列表。 process_data.py还包含将数据分为训练集和测试集并选择最常用功能(如作者所暗示的那样)的方
2021-11-06 09:57:21 13.38MB 系统开源
1