该文提出了振幅整合脑电图用于正常年轻人睡眠脑电分期的方法。记录了13例正常年轻人约8小时睡眠脑电数据,分为训练组(6例)和测试组(7例)。计算训练组每一例的振幅整合脑电图(aEEG);提取aEEG的上边带曲线作为其特征曲线;提取不同分期的aEEG上边带中位数和四分位距特征;将这些特征进行综合统计分析,得出aEEG在不同睡眠期的边界和波动范围的数值指标;利用此指标对训练组和测试组的脑电数据进行睡眠自动分期。测试组和训练组的分期结果与ZEO系统结果有较好的一致性,证明了aEEG的一组特征值作为睡眠分期决策指标
2022-03-17 18:54:26 1.17MB 自然科学 论文
1
让你对脑机接口硬件有个大致的认识 官方发布中文版 Ultracortex是一款可与OpenBCI系统配合使用的开源3D可打印耳机。它是记录研究级大脑活动(EEG)的工具。Ultracortex处于不断迭代中。如果您打印/组装自己的Ultracortex,我们希望能收到您的反馈。给我们发送电子邮件至contact@openbci.com或在我们上发推文(@Ultracortex&@OpenBCI)! 分步组装教程视频
2022-03-15 09:57:52 16.18MB openbci
1
内容包含了seed数据集与四份基于seed数据集的脑电情绪识别代码, 每一份代码都可以完整运行。 第一份是svm模型;第二份采用的pytorch框架,模型为svm和卷积神经网络(cnn)的混合模型。第三份是卷积神经网络(cnn)和循环神经网络(rnn)的混合模型。第四份是采用的机器学习算法,包含了五种机器学习常见的算法,例如决策树算法、朴素贝叶斯、K最近邻算法、随机森林算法等等。
针对目前癫痫发作实时自动预测困难的问题,将开展以LSTM模型为基础的癫痫发作预测的研究,构建了基于LSTM的神经网络模型对癫痫发作进行预测。将采集到的癫痫脑电数据进行预处理,然后提取单导联脑电小波能量特征,结合构建的基于LSTM的模型来识别癫痫发作前期和发作间期的状态,从而实现癫痫发作的预测。与传统的SVM和MLP相比,本方法取得了98.5%的分类精度和零误警的结果。为未来开发癫痫发作预警系统提供了理论基础,在临床应用上具有较大的潜在价值。
1
使用DEAP数据集中记录的EEG信号对情绪进行分类,以使用机器学习算法(如支持向量机和K - 最近邻)实现高精度得分。 1)将数据集存储在文件夹中 - > data/ 2)运行 runFile.py 文件
基于CSP的多类运动想象脑电特征自动选择算法
2022-02-15 09:27:40 768KB 研究论文
1
脑电情绪识别二分类算法,采用模型决策树、SVM、KNN三个模型 (deap数据集),代码主要分为三部分:快速傅里叶变换处理(fft)、数据预处理、以及各个模型处理。采用的模型包括:决策树、SVM、KNN三个模型(模型采用的比较简单,可以直接调用库,很适合我这种新手,看起来也方便)。
基于CNN和LSTM的脑电情绪识别_运用卷积神经网络_4D-CRNN,数据集为DEAP和seed。数据集采用的是脑电研究中最常用的DEAP和SEED数据集并且在两个数据集中都取得了很高的准确率。都达到了92%左右的准确率
2022-02-01 19:06:00 1.75MB lstm cnn 深度学习 人工智能
脑机接口 SSVEP脑电模式识别 eCCA
2022-01-18 10:17:30 6.02MB ssvep BCISSVEP 脑电
1
EGG 大脑电波形状数据 EEG brain wave for confusion_For variable selection and causal inference
2022-01-09 20:49:56 108.98MB 脑电波 EGG 脑电
1