本文采用因子分析,聚类分析,判别分析等方法对半导体行业进行多元统计分析,并从企业财务指标对企业绩效进行评估。 KMO检验和Bartlett检验表明,半导体行业的财务数据非常适合因子分析。 通过因子分析和聚类分析,最终将71家半导体公司按照偿付能力,盈利能力,运营能力和成长能力分为四类,为投资者提供参考。
1
k-means聚类算法及matlab代码安全聚类 SAFE(来自Ensemble的单细胞聚合聚类):单细胞RNA-seq数据的聚类集成 尽管最近已经开发出几种方法来使用单细胞RNA-seq(scRNA-Seq)数据对细胞类型进行聚类,但它们利用了数据的不同特征,并且在聚类数量和实际聚类分配方面均产生了不同的结果。 在这里,我们介绍了SAFE聚类,单细胞聚合(来自Ensemble)聚类,这是一种灵活,准确且可靠的聚类scRNA-Seq数据的方法。 SAFE聚类将多种聚类方法的结果作为输入,以构建一个共识解决方案。 SAFE聚类目前嵌入了四种最先进的方法,即SC3,CIDR,Seurat和t-SNE + k -means。 并使用三种基于超图的分区算法将这四种方法的解决方案整合在一起。 SAFE聚类由Yuchen Yang []和Yun Yun []维护。 新闻与更新 2020年9月7日 2.00版已发布 SAFEclustering中使用的Seuart版本已更新为版本3。Seuratv.2不再兼容 SAFE聚类仅接受计数数据。 其他格式,例如FPKM,CPM和RPKM不再兼容 2018年
2023-04-18 14:15:42 4.17MB 系统开源
1
RBF-k均值聚类算法的matlab程序和样本数据,可用于RBF-k均值聚类算法的仿真。
基于模糊聚类对数字图形识别,谭军,,随着社会的不断发展,图形图像识别在现实生活中众多领域中参用的越来越广泛,在图形图像识别中最重要的环节就是对图形图像识别的
2023-04-14 00:24:43 455KB 首发论文
1
可疑制作matlab代码回归-计算-智能 此作业的目的是研究TSK (Takagi-Sugeno-Tang)模型拟合多变量非线性函数的能力。 特别是,使用来自 和 模糊神经模型的两个数据集,我们试图从可用数据中估计目标属性。 第1部分 第一个数据集用于对此类模型的训练和评估过程进行简单调查,并说明分析和解释结果的方式。 检查的模型有四个,它们在隶属函数的数量(2 或 3)和输出类型(单例或多项式)方面各不相同。 在这种情况下,数据集的小尺寸允许我们使用Grid Partition方法进行输入空间划分。 数据集: 第2部分 第二个更复杂的数据集用于更完整的建模过程,其中包括预处理步骤,例如特征选择和通过交叉验证优化模型的方法。 由于数据集较大,可能会出现规则爆炸等问题。 为了避免这种情况,首先,我们为输入分区部署了另一种称为减法聚类(SC)的方法,并且还需要通过选择最重要的特征来降低数据集的维数并拒绝不太有用的特征。 之后,我们应用Grid Search和5-fold Cross Validation来找到特征数量和集群半径的最佳组合,从而使验证误差最小。 使用该过程产生的结果,我们训练
2023-04-13 23:53:39 15.08MB 系统开源
1
NTsys-pc2.01图解使用说明1数据的录入方法:1)利用Ntedit直接录入数据 0、1二元数据中的数据缺失记为2。其中列标可以写为样品编号(条带编号),在No.rows 栏中写入0、1数据总数,No.cols 栏中写入样品总数。文件另存为*.nts格式。 2)从excel表中直接读入数据 Excel表中输入数据格式如下图。A1必须为1,B1为0、1数据总数,C1为样品总数
2023-04-13 21:35:38 3.93MB 遗传距离 聚类分析 主成份分析
1
针对K-均值聚类算法需要事先确定聚类数K的问题,将粒度计算引入样本相似度函数,定义了新的样本相似度,用模糊等价聚类确定数据集可能的最大类簇数Kmax以Kmax为搜索上界,利用改进全局K-均值聚类算法,以BWP(Between-within Proportion)为聚类有效性度量指标,提出确定最佳聚类数的一种新方法.通过UCI机器学习数据库数据集以及随机生成的人工模拟数据集实验测试,证明该算法不仅能有效确定数据集的最佳聚类数,而且适用于大规模数据集,但是会受到噪音点影响.
2023-04-13 14:55:16 392KB 自然科学 论文
1
标准扫描 这是 RapidMiners 原生 DBSCAN 算法的扩展。 输入 虽然在经典的 DBSCAN epsilon 用于确定两个与密度相关的点之间的最大距离,但此修改引入了 ** epsilon_space ** 和 ** epsilon_time **。 这允许您根据地理以及所有时间距离对数据进行聚类。 此外,可以从多个维度中选择此输入参数,例如空间的米、公里等,以及时间距离的秒、分、小时等。
2023-04-12 17:13:10 36KB Java
1
聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小; 对相似的文档或超链接进行聚类,由于类别数远小于文档数,能够加快用户寻找相关信息的速度;
2023-04-12 15:04:20 2.6MB 聚类算法 ppt
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2023-04-11 14:06:29 299KB
1