test为运行文件
2022-04-06 03:09:11 11KB Tikhonov正则化 L曲线 Matlab
1
一维热传导方程热源反问题基于最小二乘法的正则化方法
2022-04-01 16:09:44 371KB 研究论文
1
在深入探讨这个话题之前,请看一下这张图片:每次谈及过拟合,这张图片就会时不时地被拉出来“鞭尸”。如上图所示,刚开始的时候,模型还不能很好地拟合所有数据点,即无法反映数据分布,这时它是欠拟合的。而随着训练次数增多,它慢慢找出了数据的模式,能在尽可能多地拟合数据点的同时反映数据趋势,这时它是一个性能较好的模型。在这基础上,如果我们继续训练,那模型就会进一步挖掘训练数据中的细节和噪声,为了拟合所有数据点“不择手段”,这时它就过拟合了。换句话说,从左往右看,模型的复杂度逐渐提高,在训练集上的预测错误逐渐减少,但它在测试集上的错误率却呈现一条下凸曲线。来源:Slideplayer如果你之前构建过神经网络
1
总变异正则化最小二乘反卷积是最标准的图像处理问题之一。 该软件包使用增强拉格朗日 [1] 的概念提供了当前最先进算法的实现,可以将其视为广为人知的乘法器交替方向方法 (ADMM) 的变体。 deconvtv 的用户界面与当前 MATLAB 的反卷积工具相同,包括 deconvwnr、deconvlucy 和 deconvreg: out = deconvtv(img, psf, mu, opt); deconvtv 支持对图像和视频解卷积问题的直接时空处理。 deconvtv 的应用包括但不限于:图像和视频去模糊、图像和视频去噪、深度数据增强、热空气湍流稳定和多视图合成。 如需更多信息和引文,请参阅: [1] SH Chan、R. Khoshabeh、KB Gibson、PE Gill 和 TQ Nguyen,“用于全变分视频恢复的增强拉格朗日方法”,IEEE Trans。 图像
2022-03-16 16:39:16 420KB matlab
1
通过ν正则化优化极限学习机
2022-03-14 09:57:59 985KB 研究论文
1
图多NMF特征聚类 介绍 进行代码。 受流形学习和多视图非负矩阵分解(NMF)的启发,我们引入了一种新的基于局部图正则化的多视图NMF特征提取方法,其中考虑了数据之间的内视图相关性。 通过构造一个最近邻图来整合每个视图的局部几何信息,并应用两个迭代更新规则来有效地解决优化问题,从而提出矩阵分解目标函数。 请引用以下信息: @inproceedings{wang2015multi, title={Feature Extraction via Multi-view Non-negative Matrix Factorization with Local Graph Regularization}, author={Wang, Zhenfan and Kong, Xiangwei and Fu, Haiyan and Li, Ming and Zhang, Yujia}, bo
2022-03-10 15:30:01 2.43MB MATLAB
1
在移动到移动传感网络中,利用无线信道的固有稀疏性,可将 FBMC/OQAM 系统信道估计作为一个压缩感知问题来研究,以提高系统频带利用率。首先,提出了一种新的基于Tanimoto系数的弱选择正则化正交匹配追踪(T-SWROMP)算法,以提高 LS 信道估计的精度。然后,分别用结合辅助导频和编码方法的 T-SWROMP方法来估计FBMC/OQAM系统中的信道频率响应。仿真结果表明,所提方法比传统的SWOMP方法具有更低的复杂度。此外,其在双选择信道下比传统的OMP、SWOMP和ROMP方法具有更好的BER性能。
1
用于图像平滑的自适应正则化范数
2022-02-28 22:19:33 2KB matlab
1
-在过去的四十年里,大多数人使用变分方法来解决光流估计的问题。随着机器学习的发展,最近的一些工作试图利用卷积神经网络(CNN)来解决这个问题,并取得了令人满意的结果。FlowNet2[1]是最先进的CNN,需要超过160M的参数才能实现准确的流量估计。我们的LiteFlowNet2在Sintel和KITTI基准测试中的性能优于FlowNet2,同时在模型尺寸和运行速度上分别是FlowNet2的25.3倍和3.1倍。LITEFRONET2是建立在传统方法基础上的,类似于变分方法中数据保真度和正则化的相应作用。我们以SPyNet[2]的形式计算空间金字塔形式的光流,但通过一种新的轻型级联流推断。通过早期校正和描述符匹配的无缝结合,它提供了较高的流量估计精度。流正则化通过特征驱动的局部卷积来改善异常值和模糊流边界的问题。我们的网络还拥有一个用于金字塔特征提取的有效结构,并支持特征扭曲,而不是像FlowNet2和SPyNet中所实践的图像扭曲。与LiteFlowNet[3]相比,LiteFlowNet2在Sintel Clean上的光流精度提高了23.3%,Sintel Final提高了12.
2022-01-30 11:02:23 45.84MB cnn 人工智能 神经网络 深度学习
L2正则化原理: 过拟合的原理:在loss下降,进行拟合的过程中(斜线),不同的batch数据样本造成红色曲线的波动大,图中低点也就是过拟合,得到的红线点低于真实的黑线,也就是泛化更差。 可见,要想减小过拟合,减小这个波动,减少w的数值就能办到。 L2正则化训练的原理:在Loss中加入(乘以系数λ的)参数w的平方和,这样训练过程中就会抑制w的值,w的(绝对)值小,模型复杂度低,曲线平滑,过拟合程度低(奥卡姆剃刀),参考公式如下图: (正则化是不阻碍你去拟合曲线的,并不是所有参数都会被无脑抑制,实际上这是一个动态过程,是loss(cross_entropy)和L2 loss博弈的一个过程。训
2022-01-18 14:17:11 98KB ar ens fl
1