针对当前流行的视频监控系统不能智能识别监视目标、不能智能处理突发状况等问题,提出了一种基于智能视频监控的安防系统设计方案。 该系统主要由监控端、管理端和服务端三部分组成,利用网络摄像机、红外探测、电子围栏等设备对安防区域实施联合监控;借助数字图像分析技术,实时检测监控场景下的运动目标,并对其定位、识别、行为理解,智能地管控安防区域。 文中重点阐述了智能视频监控系统的架构设计及视频智能分析的实现。
1
智能视频监控中目标检测与识别》系统介绍了智能视频监控中目标检测与识别的基本问题及其相关处理技术。主要内容包括智能视频监控的理论、算法和典型应用实例。包括计算机视觉基本理论、运动目标检测技术、运动目标跟踪和分类技术、运动的场景分析及行为理解技术。其中目标的检测与识别技术在资助的科研项目中有成熟可行的应用实例。《智能视频监控中目标检测与识别》内容由浅人深、循序渐进,着重于经典内容和最新进展的结合,并辅以较多的应用范例。《智能视频监控中目标检测与识别》可作为高等院校有关专业的研究生和高年级本科生的教学参考书,也可供相关专业的科技人员学习参考。 上篇 智能视频监控中目标检测与识别概论 第1章 绪论 1.1 智能视频监控概述 1.1.1 智能视频监控的发展 1.1.2 智能视频监控中的关键问题 1.2 智能视频监控的研究内容 1.2.1 智能视频监控的系统结构 1.2.2 智能视频监控的难题 1.3 研究现状与应用前景 参考文献 第2章 计算机运动视觉相关理论 2.1 摄像机的标定 2.1.1 坐标系的变换 2.1.2 摄像机的标定 2.2 双目立体视觉 2.2.1 特征匹配关键技术 2.2.2 特征匹配算法分类与立体成像 2.3 运动视觉 2.3.1 运动视觉的研究内容 2.3.2 运动视觉处理框架 2.4 场景理解 2.4.1 场景理解认知框架 2.4.2 静态场景理解 2.4.3 动态场景理解 参考文献 第3章 运动目标检测技术 3.1 运动目标检测概述 3.1.1 光流法 3.1.2 相邻帧差法 3.1.3 背景差法 3.1.4 边缘检测方法 3.1.5 其他重要的相关方法 3.2 视频监控中的背景建模 3.2.1 背景提取与更新算法概述 3.2.2 基于GMM的背景提取与更新算法 3.2.3 基于AKGMM的背景提取与更新算法 3.2.4 去除阴影 3.3 ROI面积缩减车辆检测搜索算法 3.3.1 改进的帧差法 3.3.2 图像的腐蚀与膨胀 3.3.3 车辆目标分割识别 3.3.4 实验结果与分析 参考文献 第4章 运动目标跟踪技术 4.1 目标跟踪的分类 4.2 目标跟踪方法 4.2.1 基于特征的跟踪方法 4.2.2 基于3D的跟踪方法 4.2.3 基于主动轮廓的跟踪方法 4.2.4 基于运动估计的跟踪方法 4.3 粒子滤波器 4.3.1 离散贝叶斯滤波系统 4.3.2 蒙特卡洛采样 4.3.3 贝叶斯重要性采样 4.3.4 序列化重要性采样 4.3.5 粒子滤波(Particle Filte)一般算法描述 4.3.6 粒子数目N的选取 4.4 多视角目标跟踪 4.4.1 目标交接 4.4.2 多摄像机的协同 4.4.3 摄像机之间的数据通讯 4.4.4 多摄像机系统总体设计与集成 参考文献 第5章 运动目标分类技术 5.1 目标分类方法 5.1.1 基于形状信息的分类 5.1.2 基于运动特性的分类 5.1.3 混合方法 5.2 分类的特征提取 5.2.1 视频图像的两种特征 5.2.2 分类特征选择 5.3 分类器构造 5.3.1 支持向量机理论 5.3.2 多类支持向量机 5.3.3 特征训练 5.4 训练和分类方案 5.4.1 静态图像训练分类模型 5.4.2 动态视频中运动对象的分类 5.4.3 训练和分类的实验结果 参考文献 第6章 行为理解技术 6.1 行为理解的特征选择与运动表征 6.1.1 特征选择 6.1.2 运动表征 6.2 场景分析 6.2.1 场景结构 6.2.2 场景知识库的建立和更新 6.3 行为建模 6.3.1 目标描述 6.3.2 约束表达 6.3.3 分层的行为模型结构 6.4 行为识别 6.4.1 基于模板匹配方法 6.4.2 基于状态转移的图模型方法 6.4.3 行为识别的实现 6.5 高层行为与场景理解 6.6 行为理解存在的问题与发展趋势 参考文献 下篇 智能视频监控应用实例 第7章 白天车辆检测实例 7.1 道路交通样本库的采集与组织 7.1.1 样本的采集 7.1.2 样本库元信息和组织 7.2 车辆检测系统结构设计 7.2.1 基于视频的车辆检测方法概述 7.2.2 虚拟线圈车辆检测法的算法流程 7.2.3 系统框图 7.3 背景重构 7.3.1 视频背景重构技术回顾 7.3.2 基于IMFKGMM的背景提取与更新算法 7.4 灰度空间阴影检测算法研究 7.4.1 彩色图像的灰度变换 7.4.2 算法原理 7.4.3 试验结果 7.5 虚拟线圈车辆检测法 7.5.1 数学形态学后处理与状态机 7.5.2 交通参数的测量 第8章 夜间车辆检测实例 8.1 夜间视频车辆检测系统框架 8.2 摄像机配置 8.2.1 摄像机安装和标定 8.2.2 车灯在路面上的投影与视野的设
2021-11-11 10:49:11 23.61MB 视频监控 目标检测 目标识别
1
房屋出租小助手APP是专为个人房东管理出租房而开发的APP应用,主要功能有租客管理(利用人工智能自动识别租客身份证,无需人工录入),房间管理,出租管理,水电抄表管理,水电费管理,押金管理,收款管理,身份证管理,财务统计,房租支付管理,上传头像,上传微信&支付宝支付码,在线升级,修改密码等功能。该系统采用Jsp技术,使用SSM框架,Mysql数据库,ajax技术及人工智能等相关技术实现。 项目开发技术:java,jsp,mysql,MyBatis,SpringMVC,jquery,ajax,json,weui,项目运行环境:jdk1.8及以上版本,tomcat8.0及以上版本,mysql5.5及以上版本项目开发工具: 本项目开发工具是Eclipse及HBuilder X,也支持myEclipse,Intellij Idea等其他版本开发工具
1
相关资料: 基于智能视频监控的安防系统设计(一)       3 智能视频分析的实现   对视频图像的采集、分析工作主要由前端摄像机内置的嵌入式微处理器来完成。 这种数据处理方式可以使得系统对原始或接近原始的图象进行分析,时间做出快速而准确的判断。   一个完整的视频图像分析处理过程需要融合图像处理技术、模式识别技术等多种技术手段才能达到较好的实践效果。 其工作过程包括图像的预处理、图像分割、特征提取和图像分类,工作流程图如图3所示。   系统的图像识别设计借鉴运动检测的思路来实现:首先根据各坐标的像素值在整个序列中的统计信息对背景进行恢复,如有异常情况,则提取出来;然后再利
1
摘 要:针对当前流行的视频监控系统不能智能识别监视目标、不能智能处理突发状况等问题,提出了一种基于智能视频监控的安防系统设计方案。 该系统主要由监控端、管理端和服务端三部分组成,利用网络摄像机、红外探测、电子围栏等设备对安防区域实施联合监控;借助数字图像分析技术,实时检测监控场景下的运动目标,并对其定位、识别、行为理解,智能地管控安防区域。 文中重点阐述了智能视频监控系统的架构设计及视频智能分析的实现。   0 引 言   随着我国社会经济的不断进步,公众对安全防范的意识也在逐步提升,视频监控系统越来越多的被应用于企业、学校、银行、居民区中。 但是目前,多数的视频监控系统都只是提供实时图像
1
计算机视觉是用计算机或机器代替人眼对目标去识别、跟踪、测量,并进行图像处理。5G技术是比LTE网络具有更高传输速率、更低传输时延、更高可靠性、更广泛的连接等特点。本文探讨计算机视觉目标识别与跟踪处理技术与5G通信相结合,在当前视频监控系统基础上,设计构建第三代智能视频监控系统,并展望在各类行业和家庭的应用前景。
2021-10-28 20:29:29 1.93MB 系统 5G
1
人工智能视频公开课建设的体会.pdf
2021-10-19 17:03:12 481KB 文档
智能视频监控中目标检测与识别 智能视频监控中目标检测与识别
2021-10-07 19:22:02 37.83MB 智能视频监控中目标检测与识别
1
一种基于多级框架的静态前景检测方法,向梅,,近年来,智能视频监控系统在银行、电力、交通、安检以及军事设施等领域的安全防范方面发挥着越来越重要的作用。而动态场景中的前
2021-09-27 16:48:33 1.35MB 智能视频监控
1
精确地消除活动阴影对运动目标的影响是智能视频监控的核心任务之一,针对当前运动阴影检测中采用的纹理信息过于粗糙、阈值选取需要人工干涉等问题,通过对NCC(归一化互相关)纹理算法进行改进,并结合亮度和归一化颜色特性,提出一种自适应的运动阴影检测方法。以混合高斯模型得到的前景像素为基础,通过阴影在亮度和归一化颜色的特性筛选出候选的阴影区域,结合改进的纹理算法进一步缩小阴影区域范围,最后利用空间后处理得到真实阴影。实验结果表明,该算法在有效降低噪声干扰的情况下能够较好区分局部纹理不明显的运动目标和阴影。
1