恶意软件分类器
这是恶意软件分类研究的代码库。 所有深度学习模型都是使用Python 3.6+和PyTorch 1.9实现的。
点击查看研究详情
数据
源数据是由恶意软件动态分析系统生成的json报告。 对数据进行了分析,以提取有关恶意样本的最有用信息。 分析的结果是,选择了3698个特征,并将在此基础上进行进一步的分类。 因此,为恶意软件的每个实例分配了一个尺寸为3698的二进制特征向量,该特征向量的标签是卡巴斯基反病毒软件进行分类的结果。 该数据库包含来自8种不同类型的恶意软件的大约10,000个带标签的样本和大约14,000个未带标签的样本。
数据可视化
尺寸为3698的规格化矢量表示为大小为61×61(61≈√3698)的RGB图像,其中,每个像素的颜色由相应特征的值设置。
自动编码器
在未标记的数据上训练了一个潜在空间尺寸为200的自动编码器模型,以便使用预训练的编码器对恶意软
1