文章目录1. 奇异值分解的定义与性质1.1 定义1.2 两种形式1.2.1 紧奇异值分解1.2.2 截断奇异值分解1.3 几何解释1.4 主要性质2. 奇异值分解与矩阵近似2.1 弗罗贝尼乌斯范数2.2 矩阵的最优近似2.3 矩阵的外积展开式3. 奇异值分解Python计算
一种矩阵因子分解方法
矩阵的奇异值分解一定存在,但不唯一
奇异值分解可以看作是矩阵数据压缩的一种方法,即用因子分解的方式近似地表示原始矩阵,这种近似是在平方损失意义下的最优近似
1. 奇异值分解的定义与性质
1.1 定义
Am×n=UΣVTUUT=ImVVT=InΣ=diag(σ1,σ2,…,σp)σ1≥σ2≥…≥σp≥0
2021-11-28 15:24:48
159KB
al
ar
c
1