在深入探究大语言模型PPT的相关技术内容时,首先需要了解自然语言处理(NLP)的基础,其中涵盖了文本表示和核心任务。文本表示在NLP中是将符号转化为向量的过程,目的是让计算机能够更好地理解和处理语言信息。文本表示技术的关键在于核心特点、优势和局限性的平衡。例如,向量空间模型(VSM)利用TF/TF-IDF为词语赋予权重,虽然简单直观且适用于基础文本分析,但其高维稀疏性导致无法准确捕捉词序和上下文信息。而3-gram模型则通过前N-1个词预测当前词,能够实现简单的基础任务效果稳定,但当N增大时,数据的稀疏性问题同样凸显。 为了改善这一状况,低维密集向量技术如Word2Vec应运而生。Word2Vec使用CBOW和Skip-Gram两种方式学习词向量,从而能够捕捉词语的语义关系,但仍然存在一定的局限性,如无法处理一词多义的问题。为此,ELMo利用双向LSTM预训练模型,支持多义性词语的理解,并能够捕捉复杂的上下文信息。ELMo通过动态调整向量来适应不同的上下文,从而更好地捕捉语义的多样性。 Transformer架构是NLP领域的又一重大突破,它采用了注意力机制来支持并行计算,有效地捕获长距离序列中的依赖关系。Transformer的核心机制包括注意力机制,这是通过query、key和value计算权重,从而对上下文进行加权求和的过程。注意力机制的本质是通过相似度计算来分配注意力权重,以此聚焦于关键信息。 在大语言模型的应用上,能够看到NLP基础任务的实践,如文本分类、实体识别、关系抽取、文本摘要、机器翻译和自动问答等。这些任务是通过上述提到的技术手段来实现的,例如使用中文分词、词性标注、子词切分等方法来拆解和理解人类语言。文本分类和实体识别依赖于机器学习算法对文本进行分类和提取关键信息。关系抽取和文本摘要则是对文本内容进行更深层次的理解和信息提炼。机器翻译和自动问答则是在理解语句含义的基础上,实现跨语言的信息转换和问题解答。 大语言模型PPT涉及了自然语言处理的核心技术,包括文本表示、核心任务以及各种模型算法的详细介绍和应用实例。这些技术和模型构成了现代NLP的基石,使得机器能够更加深入和准确地理解和处理人类语言。
2025-10-24 10:36:30 2.17MB
1
《人工智能概论期末大作业报告》是南京邮电大学针对人工智能概论课程的一份重要学习成果展示,旨在考察学生对人工智能基本概念、理论和技术的掌握程度。这份报告涵盖了多个方面的内容,包括机器学习、神经网络、自然语言处理、计算机视觉等关键领域的基础理论和实际应用。 人工智能概论主要探讨的是人脑智能与机器智能的对比,以及如何通过算法和计算能力模拟人类智能。在报告中,学生可能需要深入解释人工智能的定义,以及它在现代社会中的重要性。这涉及到人工智能的分类,如弱人工智能和强人工智能,以及它们各自的应用场景。 机器学习是人工智能的核心组成部分,它是让计算机通过数据自我学习和改进的方法。报告中可能会详细讨论监督学习、无监督学习和强化学习三种主要的学习方式,以及各自的优势和应用场景。比如,监督学习中的支持向量机(SVM)和决策树,无监督学习中的聚类算法,如K-means,以及强化学习中的Q-learning算法。 再者,神经网络是模仿人脑神经元结构的复杂模型,用于解决非线性问题。报告中会介绍神经网络的基本架构,如前馈神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并可能涉及到深度学习的概念,如深度信念网络(DBN)和深度卷积网络(DCN)。 自然语言处理(NLP)是人工智能领域的一个重要分支,关注如何让计算机理解和生成人类语言。报告中可能包含词法分析、句法分析、语义理解等内容,以及相关的NLP技术,如词嵌入(Word2Vec)、情感分析和机器翻译。 计算机视觉是让机器“看”世界并理解图像信息的学科。报告中会涉及图像分类、目标检测、图像识别等任务,可能会讨论到经典算法如SIFT和HOG,以及现代深度学习模型,如YOLO和Mask R-CNN。 Python作为人工智能的主流编程语言,会在项目实践中起到至关重要的作用。"pythonProject1"可能是一个使用Python实现的人工智能项目,例如基于机器学习的预测模型,或使用深度学习进行图像识别的系统。通过这个项目,学生可以将理论知识转化为实际操作,加深对人工智能技术的理解。 这份期末大作业报告全面覆盖了人工智能的基础理论和实践应用,是对学生学习成果的综合评价,也是他们展示自己在人工智能领域知识和技能的平台。通过这样的学习过程,学生不仅能掌握理论知识,更能具备解决实际问题的能力,为未来在这个快速发展的领域中持续探索打下坚实的基础。
2025-10-23 16:23:03 29.93MB 人工智能概论
1
本项目是一个基于Java SSM框架与Vue移动端技术实现的校园请假系统。该系统旨在为高校师生提供一个便捷、高效的请假管理平台。通过该系统,学生可以在线提交请假申请,包括请假原因、时间、地点等信息,而教师和学校管理者则能够方便地审批这些申请,实现请假流程的电子化和自动化。 在框架方面,后端采用SSM(Spring+SpringMVC+MyBatis)框架,确保系统的稳定性和可扩展性;前端则使用Vue.js进行开发,提升用户体验和界面交互性。此外,系统还支持移动端访问,满足师生随时随地处理请假事务的需求。 项目不仅实现了基本的请假功能,还融入了诸多细节设计,如审批流程的灵活配置、请假记录的查询与统计等,以更好地满足实际校园管理场景。项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
2025-10-23 15:46:15 15.34MB Java 毕业设计 vue 论文
1
本书系统讲解大语言模型(LLM)从理论到生产的全流程,涵盖模型原理、训练、微调、部署与应用开发。通过动手实践,读者将掌握使用PyTorch和Hugging Face等工具构建真实LLM产品的核心技能,并深入了解提示工程、RAG、边缘部署等关键技术。特别适合希望将LLM落地为实际产品的工程师与开发者。 本书作为一本系统性的指南,深入探讨了构建大型语言模型(LLM)应用的整个过程,从理论基础到实际生产部署。它详细阐述了语言模型的基本原理,展示了如何通过动手实践来训练和微调这些模型。在此基础上,书中进一步指导读者如何将这些模型部署到生产环境中,并介绍了利用现代工具如PyTorch和Hugging Face进行应用开发的实际操作。本书特别强调了提示工程、Retrieval-Augmented Generation(RAG)以及边缘部署等关键技术的运用,这些内容对于希望将LLM技术应用到具体产品中的工程师和开发者尤为重要。 书中不仅包含了理论知识的讲解,更强调了将理论转化为实际操作的技巧。作者通过实例和代码示例,手把手地引导读者理解并实践语言模型的构建和优化。同时,书中也着重于提示工程的实践,即如何有效地利用外部信息来增强模型的表现,以及如何通过RAG技术整合检索数据与生成模型,实现知识的动态检索与应用。此外,边缘部署技术也被纳入讨论,使读者能够了解到如何在资源有限的环境下高效部署大型语言模型。 该书的写作意图明确,面向的读者群体是那些希望将LLM技术应用于现实世界问题的工程师和开发者。对于这部分读者来说,本书不仅提供了一个学习和参考的完整路径,也是一本实际操作的实用手册。在学习本书的过程中,读者将逐步掌握构建和部署大型语言模型应用的核心技能,从而能够更自信地将这些前沿技术应用到自己的项目和工作中。 在当前的技术背景下,大型语言模型因其在自然语言处理(NLP)领域的突出表现而变得越来越重要。从聊天机器人、智能助手到复杂的数据分析应用,LLM都有着广泛的应用前景。通过本书,读者将能深刻理解LLM的工作原理及其背后的复杂性,并能够通过实际操作来解决在训练、微调、部署和应用开发过程中可能遇到的各种问题。最终,读者将能够更好地将这些技术应用到实际项目中,推动产品创新和业务发展。 本书不仅提供了一个全面的学习路径,还对相关技术进行了深入的讨论,使读者能够获得在行业内部实践和应用大型语言模型所需的全面知识。这对于那些希望在快速发展的技术领域保持竞争力的专业人士来说,是一本不可多得的参考资料。 本书的出版也体现了出版界对于技术书籍的重视,反映了出版商对专业性和实用性的追求。通过这种方式,出版商不仅为读者提供了学习的机会,也为整个行业的知识传播和技术进步做出了贡献。 此外,书中还特别强调了环保意识,在出版物的制作过程中尽可能使用了环保材料,展示了对环境保护的负责任态度。这种做法值得在整个出版行业内推广,鼓励更多的出版商和作者在推动知识传播的同时,也注重环境保护。 本书最终的目的,是为读者提供一个从零开始构建和应用大型语言模型的完整框架,帮助他们在技术的浪潮中乘风破浪,不断进步,最终实现将理论应用于实践,将创意转化为现实的宏伟目标。
2025-10-23 11:37:18 65.26MB Python PyTorch
1
易语言是一种专为初学者设计的编程语言,它采用了贴近自然语言的语法,使得编程变得更加简单易懂。在这个“易语言小图拼大图”项目中,我们可以学习到如何使用易语言来处理图像数据,尤其是将多个小图像拼接成一个大图像的技术。 我们需要了解的是“小图拼大图”的概念。在计算机图形学中,这通常涉及到图像的合成与处理。小图拼大图意味着将一系列的小图像按照特定的排列方式组合成一个大的完整图像。这种技术常用于全景图制作、图像拼接或是在有限的显示空间内展示多张图片。 在源码中,“载入小图片”是关键步骤,它涉及读取图像文件,这可能使用了易语言的内置图像处理库或第三方图形库。易语言提供了读取、解析和加载图像文件的函数,比如可能是“打开文件”和“读取文件”等命令,然后将这些数据转换为程序可以处理的图像对象。 接着,“创建小图片目录文件”可能是指在硬盘上创建一个包含所有小图像文件的文件夹,以便程序能够按顺序访问这些图片。这一步可能使用了易语言的文件操作命令,如“新建文件夹”和“复制文件”。 “统计小图片的特征亮度”是一个图像处理的过程,它可能涉及到对每个小图像的像素进行分析,计算其亮度值。这是为了确保在拼接过程中,不同图片之间能有平滑过渡,避免出现明显的边界。易语言中可能使用了循环结构遍历每个像素,并进行亮度计算。 “开始拼图”是整个过程的核心,它可能包括计算每个小图像在大图中的位置,以及如何无缝地将它们连接起来。这可能涉及到图像裁剪、缩放、重采样等技术,易语言可能提供了相关的图像处理函数。 “SetCursor”和“LoadCursor”是与鼠标光标有关的操作。在拼图过程中,用户可能需要通过拖动来调整小图像的位置,这时就需要改变鼠标的形状或行为,提供更友好的交互体验。 这个易语言项目涵盖了图像处理的基本流程,包括图像读取、特征分析、图像拼接以及用户交互。通过学习这个源码,不仅可以掌握易语言的编程技巧,还能深入了解图像处理的原理和方法。这对于想要深入学习图像处理和计算机视觉领域的初学者来说,是一次宝贵的实践机会。
1
数据采集与清洗是大数据技术与应用中至关重要的环节,它涉及从各种数据源中收集信息,并对数据进行必要的预处理,以便于后续的数据分析和挖掘。本章节将对数据采集的历史、方法、工具以及应用进行详细阐述。 数据采集拥有悠久的历史,其起源可以追溯到远古时期的结绳记事,而在19世纪末,霍尔曼·霍尔瑞斯发明的电动读卡机极大提高了数据处理的效率。人工采集方法历史悠久,普查是最古老的一种方式,具有两千多年的历史。抽样调查方法则在19世纪末被提出,并在后续几十年中得到完善,成为一种经济有效的数据采集方法。随着时代的发展,数据采集的重要性日益凸显,例如罗斯福总统在1930年代开展的数据收集计划,为社会保障法的实施提供了数据支持。进入21世纪,数据采集进一步发展,印度建立的身份识别系统就是一个典型的例子。 在应用层面,数据采集在各行各业都有广泛的应用。在旅游行业,通过收集信息优化出行策略;在电子商务领域,通过分析商品信息构建比价系统;在银行和金融领域,通过个人交易数据进行征信和贷款评级;而在舆情分析领域,数据采集则有助于了解公众意见和情绪。 大数据采集不仅限于传统方式,还可以通过网络爬虫等方式实现。网络爬虫主要针对网站内容进行自动化数据收集,包括新闻、社交、购物等网站的数据,以及一些API提供的流型数据。 数据采集的方法多种多样,包括系统日志采集、网络数据采集和数据库采集。系统日志采集主要是收集业务日志数据供后续分析使用,而网络数据采集依赖于互联网搜索引擎技术,针对性地抓取和归类数据。数据库采集则是将实时产生的数据直接写入数据库中,便于处理和分析。 在数据采集工具方面,目前常用的开源日志采集平台有Fluentd、Logstash、Chukwa、Scribe以及Splunk Forwarder。数据库方面,常见的有MySQL、Oracle、Redis、MongoDB等。这些工具在不同的采集场景中扮演着重要的角色。 数据清洗是数据采集过程中的重要环节,涉及去除重复数据、纠正错误、填补缺失值等操作。清洗的目的是保证数据质量,使数据更加准确、一致、完整,为后续的数据分析和决策提供更可靠的依据。数据清洗的方法包括识别异常值、处理缺失数据、合并或拆分数据等。 数据采集与清洗是大数据技术的基础,是确保数据质量的关键步骤。随着数据采集技术的不断进步和应用领域的不断拓展,数据采集与清洗技术将继续在大数据时代发挥其不可替代的作用。
2025-10-23 00:09:14 8.17MB
1
内容概要:本报告系统阐述了大模型技术驱动下金融风险决策的智能化新范式,全面梳理了从传统风控向AI赋能的感知智能、认知智能到决策智能的演进路径。报告重点解析了以大模型为核心,融合多模态数据集成、知识图谱、RAG、智能Agent等技术的风险态势感知体系,并通过“AI挖掘实验室”“智能交互”“动态调优”等实践案例,展示了AI在风险画像、规则生成、策略优化、排查提效等方面的应用。同时,报告也深入探讨了模型可解释性、数据安全、响应时效等现实挑战,并提出“MaaS”(模型即服务)等协同解决路径,最终展望了以数据为基、AI为引擎、业务价值为导向的未来智能风控生态。; 适合人群:金融机构风控、科技部门从业者,AI技术产品与解决方案负责人,以及关注金融科技前沿发展的研究人员和决策管理者。; 使用场景及目标:①理解大模型如何重构金融风控的技术架构与业务流程;②学习多模态数据、知识图谱与大模型协同驱动的智能风控实践方法;③探索AI在规则挖掘、策略生成、动态监控等场景中的落地模式与效能提升路径;④洞察智能风控面临的核心挑战与未来发展趋势。; 阅读建议:此报告兼具战略高度与技术深度,建议结合自身业务场景,重点关注“AI挖掘实验室”“智能交互”“挑战与突围”等章节,思考如何将报告中的技术框架与实践路径应用于实际风控体系的智能化升级。
2025-10-22 17:26:11 5.46MB 金融风控 风险决策 AI智能
1
垃圾分类作为一个全球性的问题,对于环境保护和可持续发展起着至关重要的作用。在这个数据集中,包含了4000余张图片,详细展示了四种主要垃圾类别:有害垃圾、可回收垃圾、厨余垃圾和其他垃圾。这些图片不仅涵盖了日常生活中的常见垃圾,还包括了一些不常见的项目,如小米电池,这类数据的加入极大地丰富了垃圾分类模型的训练素材,提高了模型的泛化能力。 有害垃圾通常指的是对人类健康或者环境有害的废弃物,比如废电池、过期药品、油漆桶等。这类垃圾需要特别处理,以避免对人类健康和生态系统造成危害。可回收垃圾指的是那些可以重新加工利用的废弃物,例如纸张、塑料、金属和玻璃容器等。厨余垃圾主要来自厨房,包括食物残渣、果皮、蔬菜叶等有机物。其他垃圾则是指既不属于上述类别,又不能回收利用的废弃物。 该数据集可以用于训练和测试各种机器学习模型,尤其是基于深度学习的目标检测算法,如YOLO(You Only Look Once)。YOLO算法是一种高效的目标检测方法,通过在图像中直接预测物体的类别和位置,可以快速准确地识别出图像中的垃圾种类。对于2025工程实践与创新能力大赛的参赛者来说,这个数据集是不可多得的资源,它不仅可以帮助参赛者在比赛中脱颖而出,还能在实际应用中推进垃圾分类的自动化和智能化水平。 数据集的文件结构相对简单,包含两个主要部分:labels和images。其中,images文件夹中存放了所有的图片文件,而labels文件夹则包含了与图片对应的标注文件,标注文件通常包含了垃圾的类别和边界框的坐标等信息,这些信息对于训练机器学习模型至关重要。 在处理这个数据集时,研究者需要对每张图片进行详细的标注,确保分类的准确性。对于图像中可能出现的垃圾,研究者不仅需要识别其种类,还需要精确地标注出其在图像中的位置。这样的工作不仅需要人工完成,而且需要一定的专业知识,以确保标注的准确性。完成后,这些数据可以被用来训练模型,使其能够自动识别和分类垃圾。 此外,数据集的创建和维护是一个持续的过程。随着垃圾分类标准的变化和新型垃圾的出现,数据集也需要不断更新和扩充。因此,对于那些希望在垃圾分类领域有所作为的研究者和开发者来说,这个数据集是他们宝贵的实验材料,有助于他们开发出更加高效、智能的垃圾分类系统。 这个垃圾分类数据集不仅在内容上具有多样性,涵盖了多种垃圾类型,包括一些不常见的项目,而且在应用上也非常广泛,适用于各种机器学习和深度学习的研究与实践。它为垃圾分类的自动化和智能化提供了有力的支持,对于促进环境保护、实现可持续发展具有重要的意义。
2025-10-22 10:20:24 316.39MB yolo 垃圾分类
1
标题所指的内容是关于OpenXml开发的官方路线图,微软官方提供的高清图片。这一路线图既是一份指南,也是一份工具,旨在帮助开发人员更好地理解和使用OpenXml技术。OpenXml是微软提供的一个用于创建和操作Open XML文档的程序库。Open XML是一种基于XML的文件格式,用于表示电子文档,被广泛应用于Office软件中,尤其是Office Open XML标准,用于Word、Excel和PowerPoint文件。 描述中提到,这幅路线图是微软官方的产品,非常精美,可以被打印出来挂于墙上。这种设计可能是为了方便开发者在日常工作中随时查阅,可以迅速地定位到所需信息,提高了工作效率。同时,将这样一张路线图挂于办公室,也是对OpenXml开发团队工作的展示和认可,体现了一种专业氛围。 标签包括了“OpenXml”、“开发”、“路线图”和“微软”,它们都是与本图相关的核心概念。OpenXml作为一种技术,被微软Office软件所支持和使用,因此,对于Office软件的开发者而言,熟悉OpenXml是一项基础技能。同时,路线图的制定,正是为了指导开发人员如何规划和实施基于OpenXml的开发工作。 根据提供的部分内容来看,这里包含了图片文件的一部分预览,由于技术限制,实际的图片内容无法直接展示。但根据描述,可以推测这些图片应该详细地展示了OpenXml开发的各个方面,例如可能包括对现有技术的概述、即将推出的新功能、开发进度、API的使用示例、常见问题解答等关键信息。这些内容对于开发者来说非常重要,能够让他们清楚地了解OpenXml的技术演进和开发最佳实践。 OpenXml作为Office文档的结构化存储格式,它的主要优势在于可以轻松地访问和修改文档的各个部分,而不像以前的二进制格式需要复杂的解码过程。因此,OpenXml使得开发者能够更灵活地开发出可以操作Office文档的应用程序,比如自动化文档处理、生成报告和处理电子邮件附件等任务。同时,OpenXml格式符合国际标准,因此也支持跨平台操作。 在开发过程中,开发者可以依赖这份路线图来掌握最新的开发信息,这样不仅能确保自己的开发工作符合微软的技术标准,也能最大化地利用OpenXml提供的功能。路线图的出现,是微软对开发者社区的又一支持举措,它体现了微软支持和鼓励第三方开发者使用其技术栈,构建更多、更好的应用和服务。 对于有兴趣了解和使用OpenXml技术的开发人员而言,这张路线图不仅是一份参考指南,更是一份学习材料,帮助他们从宏观角度把握OpenXml技术的发展脉络,促进技能的快速提升。
2025-10-22 09:45:45 4.38MB OpenXml
1
西安交通大学的计算机图形学课程是计算机科学领域的重要组成部分,它主要研究如何在计算机中表示、处理和显示图像。实验一的焦点是渲染技术,这是图形学中的核心概念,用于将三维模型转化为我们在屏幕上看到的二维图像。在这个实验中,学生们会接触到GLSL,即OpenGL着色语言,它是为OpenGL图形库编写着色器的一种高级编程语言。 GLSL是学习图形编程的基础,因为它允许我们自定义图形处理的每个阶段,包括顶点变换、几何处理和像素颜色计算。在2022年大三上的课程中,学生可能需要通过编写GLSL着色器来实现特定的渲染效果,例如光照模型、纹理贴图或者简单的动画。 在提供的"code"文件夹中,学生可能会找到以下几个部分的源代码: 1. **顶点着色器**:这部分代码处理了输入的几何数据,如顶点位置,然后将其转换到屏幕坐标系中。通常涉及矩阵变换,如模型视图矩阵和投影矩阵,以实现空间定位和视角变换。 2. **片段着色器**:片段着色器运行在每个像素上,负责计算最终的颜色值。它可以包含光照模型、纹理采样、颜色混合等复杂计算。 3. **设置与初始化**:这些代码可能包含了设置OpenGL上下文、加载着色器程序、绑定属性变量等操作,是运行GLSL程序的基础步骤。 4. **主程序**:这里包含驱动整个渲染过程的代码,比如绘制物体、更新着色器变量、控制帧率等。 在没有实验报告的情况下,理解代码的唯一途径就是深入阅读和分析。学生可能需要关注如何将GLSL着色器与主机代码集成,以及如何使用GLSL语言特性来实现渲染效果。例如,他们可能用到了GLSL中的结构体来存储顶点信息,或者使用uniform变量来传递场景数据,还可能利用纹理单元来加载和应用纹理。 学习这个实验,学生不仅能掌握基本的GLSL编程,还能了解图形管线的工作原理,这将为他们在游戏开发、虚拟现实、可视化等领域打下坚实基础。此外,通过实践,他们还将提升解决问题和调试代码的能力,这些都是IT专业人员必备的技能。
2025-10-22 00:22:51 78.58MB glsl
1