针对多目标视频跟踪中需要主要解决的目标冲突、合并以及分离等问题,提出了基于自适应混合滤波的多目标跟踪算法。采用混合高斯背景建模法获得前景图,并对图中阴影采用一种简化去除算法,即判断前景像素时,将HSV分量用加权的形式描述,而不必对各个分量依次判断。对前景图提取观测值时,引入了合并处理算法,将分裂的多个矩形检测框进行合并。然后,利用推理的方法将前景观测值与目标关联,用自适应混合滤波算法实现多目标有效跟踪。该算法结合了均值漂移算法运算效率高的和粒子滤波算法能够有效处理遮挡情况的特点。实验表明该算法可以高效地跟踪多目标、准确判断目标的出现和消失,并能够解决多目标冲突、合并和分离等问题。
2023-02-08 09:21:22 4.24MB 多目标跟 自适应混 数据关联 粒子滤波
1
NSGAII算法是一个多目标函数优化算法。多目标函数优化有一种方法是,假如现在有n个目标函数fi,首先将每个目标函数乘以一个适当的参数alfai,再将所有的目标函数加起来,得到一个目标函数。这就将多目标函数转化为单目标函数了。
2023-02-02 18:54:34 285KB NSGAII matlab 多目标函数优化 目标函数
1
目前的多目标优化算法有很多, Kalyanmoy Deb的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB自带的函数gamultiobj,该函数是基于NSGA-II改进的一种多目标优化算法。
2023-01-18 16:51:19 187KB matlab 多目标优化 NSGA
1
基于遗传算法的非支配排序算法(NSGA_II)是用于求解多目标规划问题的一种方法。 通过帕累托支配求解帕累托最优解可以有效得到多目标函数的求解结果。 为优化帕累托最优解,运用遗传算法对求解结果进行优化。 但同时遗传算法具有未成熟收敛、群体规模对性能影响大、结果受初始值影响较大等缺点,因此利用多种群遗传算法对求解结果进行进一步优化,运用移民算子联系各个种群,运用精华种群保存每代最优结果。 **运行程序请优先下载谢菲尔德大学的MATLAB遗传算法工具箱
1
多目标最小生成树问题是典型的NP 问题,Zhou 和Gen 提出了一种用于计数多目标最小生成树问题 的所有非劣最优最小生成树的算法,但该算法无法保证能够找到所有非劣最优最小生成树.针对此问题,提出一种改进的计数算法,并定性说明改进算法能够找到问题的所有非劣最优最小生成树.改进算法在进行子树剔除时增加了一些条件.模拟实验结果表明,改进后的计数算法能够找到所有的非劣最优解.这也说明该算法具有应用的潜力.
2022-12-30 19:41:21 946KB 最小生成树 非劣最优解
1
遗传算法多目标函数优化MATLAB代码遗传基因 本文的仿真源代码。 抽象的 我们解决了认知无线电网络中的功率控制问题,在该网络中,次要用户利用空间频谱机会而不会对主要用户造成不可接受的干扰。 提出了一个优化问题,旨在最大程度地提高次要用户的效用并确保主要和次要用户的QoS。 为了解决功率分配问题,提出了一种遗传算法,并提出了两种适应度函数。 第一个旨在最小化辅助网络的总发射功率消耗。 第二个是多目标函数,面向联合优化次级网络的总容量和发射功率消耗。 结果表明,基于多目标适应度函数的遗传算法辅助功率控制方案的性能接近最佳。 入门 为了运行仿真,您需要Matlab 2015a或更高版本以及与已安装的Matlab版本兼容的C编译器。 在命令行中输入: git clone https://github.com/raikel/GeneticCrn 打开Matlab并将源目录src (及其所有子文件夹)添加到Matlab搜索路径。 在Matlab工作区中,打开目录src\lib\mex并在命令窗口中键入: compile 这将编译所有源mex文件。 要使用默认参数值运行仿真,请在Matlab命令窗
2022-12-29 15:41:44 149KB 系统开源
1
基于卡尔曼滤波和最大权值匹配实现的多目标跟踪python源码+详细代码注释+使用说明.zip 基于卡尔曼滤波和最大权值匹配实现的多目标跟踪python源码+详细代码注释+使用说明.zip 基于卡尔曼滤波和最大权值匹配实现的多目标跟踪python源码+详细代码注释+使用说明.zip 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向、python、目标跟踪学习者。 也可作为课程设计、期末大作业。包含:项目源码、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。

将离散空间问题求解的蚁群算法引入连续空间, 针对多目标优化问题的特点, 提出一种用于求解带有约束
条件的多目标函数优化问题的蚁群算法. 该方法定义了连续空间中信息量的留存方式和蚂蚁的行走策略, 并将信息
素交流和基于全局最优经验指导两种寻优方式相结合, 用以加速算法收敛和维持群体的多样性. 通过3 组基准函数
来测试算法性能, 并与N SGA II 算法进行了仿真比较. 实验表明该方法搜索效率高, 向真实Pareto 前沿逼近的效果
好, 获得的解的散布范围广, 是一种求解多目标优化问题的有效方法.

1
智能优化算法-双层优化算法】基于双层优化算法求解多目标优化文题
2022-12-27 17:07:21 74KB matlab 算法 源码软件 开发语言
非支配排序,拥挤度计算,pareto前沿,A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II NSGA算法 NSGA算法缺陷 NSGA-II算法 总结 1. 快速非支配排序法将时间复杂度改进为O(MN2); 2.使用拥塞距离代替代替共享函数算法保持种群多样性; 引入精英保留策略。 非支配排序的复杂度较高: O(MN3) (M是目标函数的个数,N是种群大小); 缺少精英保留策略; 需要人为指定共享参数σshare(共享小生境步骤)。 NSGA: nondominated sorting genetic algorithms-非支配排序遗传算法 nondominated:非支配 例:回家,两目标(费用,时间),均越小越好 动车A(270 , 7),普快B(120 , 10),飞机C(240,2) C(240,2)支配A(270 , 7); A(270 , 7)被C(240,2)支配; B(120 , 10)和C(240,2)不可比,即非支配。 目的:得到一组非支配的解--Pareto最优解集。
2022-12-21 18:28:02 715KB 人工智能 多目标优化算法 进化算法
1