matlab优化常微分方程代码关于这个仓库 这个简单的MATLAB代码是使用四阶Runge-Kutta方法对一阶常微分方程dy / dx = func(x,y)进行数值求解的方法。 由于其简单性,您可以轻松地对其进行修改或将其与其他代码组合。 它是如何工作的? 首先,您必须在func.m中设置func(x,y) ,其中dy / dx = func(x,y)给出func(x,y) 。 下一步,您应该在RungeKutta.m中设置初始条件和其他参数。 有4个参数,你可以在RungeKutta.m调整:XINT,yint,xfin,和num。 x和y的初始值分别由xint和yint表示。 x的最大值由xfin定义。 最重要的参数是num(段数),因为它直接影响数值计算的误差。 该值应较大,以避免重大错误。 要开始计算,请运行代码RungeKutta.m 。 在MATLAB的工作区中,您将看到x和y已创建。 您可以通过命令“ plot(x,y)”来可视化最终结果。
2021-10-29 19:12:55 2KB 系统开源
1
Runge-Kutta 家族中最广为人知的成员通常被称为“RK4”、“经典的 Runge-Kutta 方法”或简称为“Runge-Kutta 方法”。 例子: 输入 x 的初始值,即 x0: 0 输入 y 的初始值,即 y0:0.5 输入 x 的最终值:2 输入步长h:0.2 xy 0.000 0.500 0.200 0.632 0.400 0.838 0.600 1.133 0.800 1.538 1.000 2.077 1.200 2.780 1.400 3.683 1.600 4.829 1.800 6.274 2.000 8.083 >>
2021-10-27 09:30:26 1KB matlab
1
基于圆阵的四阶累积量算法仿真,采用了线性调频(LFM)作为仿真的输入信号,中心频率可以为2G-20GHZ,带宽最大可为20MHz。
2021-10-20 10:44:34 2KB 圆阵 四阶累积量
1
四阶龙格库塔法的C语言实现(文章+程序)
2021-10-19 22:19:33 106KB 四阶龙格库塔 C语言
1
针对四阶变换器Superbuck从电路分析到建模最后稳定性分析
1
作者自己通过学习和在工作中通过计算四阶行列式总结出一种计算四阶行列式的简便方法,计算原则基于轮换与元素的排列而产生,只要会行列式运算者,均能很快地掌握和加以应用。
2021-10-04 20:03:07 94KB 行列式、轮换、逆序、排列
1
四阶经典龙格—库塔算法 C语言程序 计算方法实验程序
2021-09-30 09:20:02 324KB 四阶龙格—库塔
1
计算方法实验实+常微分方程+欧拉法、改进欧拉法、四阶龙格库塔法
2021-09-30 00:27:13 64KB 计算方法实验
1
在天体力学中,数值方法被广泛用于求解微分方程。 本代码中,根据牛顿万有引力定律,利用Runge-Kutta四阶方法对轨道运动方程进行数值积分,模拟物​​体绕地球运动的轨迹。 输入:位置和速度向量 (x,y,z,vx,vy,vz) 或者开普勒元素 (a, e, i, Omega, w, M) h = 步长步数 = 步数输出:在ECI参考系中传播的卫星PV矢量 调用:[X_RK] = RK_4(X,h,steps)
2021-09-29 19:06:33 4KB matlab
1
这些文件提供了用于求解倾斜冲击关系和Taylor-Maccoll方程的数值程序。 采用四阶Runge-Kutta数值格式隐式求解Taylor-Maccoll方程。 使用了反向方法(JD Anderson,现代可压缩流,第10.4节) 为以下内容计算流的属性-超音速马赫数-零俯仰和偏航-粘稠的完美气体 注-所产生的冲击波本质上是3D的,但是由于冲击是局部平面的,因此可以通过使用2D斜向冲击理论来对其进行局部处理 如果需要,可以将图形注释掉。
2021-09-10 18:56:28 11KB matlab
1