优化预测 使用决策树回归模型改变模型参数以优化预测算法。
2022-03-15 16:09:14 91KB Python
1
灰鲸优化算法优化退火算法,可以用于对各类数据的特征选择
2022-03-12 22:02:12 7KB optimization woa sa
1
为了实现对目标位置和速度的精确无源定位,提出了一种基于优化PSO的时差频差联合定位算法。针对传统的PSO算法收敛速度慢,容易出现局部最优,从而导致定位结果不够精确,定位速度慢的情况,引入对惯性权重系数的优化增加其算法的收敛速度,结合自然选择淘汰机理和遗传算法中杂交概念,加强粒子种群的多样性使其达到全局最优的目的。实验结果表明:相对于标准粒子群算法,本文算法在对目标求解时,能快速收敛,不容易陷入局部最优,并且具有很好的定位精度。
1
OFDM作为下一代通信系统的关键技术,亟需解决其同步问题。在ML算法的基础上,提出了基于多符号的 ML同步算法。在加性高斯白噪声条件下进行了仿真,结果表明改进的同步算法性能比ML算法要好很多。其中,基于连续符号的定时估计方法1在信噪比超过2 dB时准确率几乎可达100%,基于重复发送符号的定时估计方法2在较低信噪比条件下性能比方法1更好。信噪比为-8 dB左右时,3种优化的频偏估计方法的估计误差均在1%以内,明显好于ML频偏估计算法,证明了改进算法的优越性。
2022-03-06 19:26:51 456KB 正交频分复用
1
投资组合问题主要研究如何将有限的资金合理地分配到不同的金融资产中,以实现收益最大化与风险最小化之间的均衡.然而,证券市场往往具有很强的不确定性,投资者对于证券的期望收益率和风险损失率难以用精确数值描述,区间规划则是处理这类不确定性问题的有力工具.鉴于此,首先基于区间多目标规划建立一个以预期收益率、风险损失率和流动性为目标函数的多期投资组合选择模型;然后通过设计一个定向变异算子,改进基于偏好多面体的交互式遗传算法,并将上述算法的运算机制与所建模型的多期特性相结合以求解模型;最后在不确定交互进化优化系统上进行实证分析.实验结果表明,所提出算法能够根据投资者的不同需要得到相应最满意的多期资产组合.
1
为了提高花粉浓度预报的准确率,解决现有花粉浓度预报准确率不高的问题,提出了一种基于粒子群优化( PSO)算法和支持向量机( SVM)的花粉浓度预报模型。首先,综合考虑气温、气温日较差、相对湿度、降水量、风力、日照时数等多种气象要素,选择与花粉浓度相关性较强的气象要素构成特征向量;其次,利用特征向量与花粉浓度数据建立SVM预测模型,并使用PSO算法找出最优参数;然后利用最优参数优化花粉浓度预测模型;最后,使用优化后的模型对花粉未来24h浓度进行预测,并与未优化的SVM、多元线性回归法(MLR)、反向神经网络( BPNN)作对比。此外使用优化后的模型对某市南郊观象台和密云两个站点进行逐日花粉浓度预测。实验结果表明,相比其他预报方法,所提方法能有效提高花粉浓度未来24 h预测精度,并具有较高的泛化能力。
2022-01-13 16:34:40 1.13MB 模拟/电源
1
拓扑优化经典99行代码及注释,详见博客https://blog.csdn.net/qq_42183549/article/details/122369170
2022-01-08 09:04:52 9KB matlab 序列最小化优化算法 算法
1
最优化算法 数值最优化算法 牛顿法
1