When most people hear “Machine Learning,” they picture a robot: a dependable butler or a deadly Terminator depending on who you ask. But Machine Learning is not just a futuristic fantasy, it’s already here. In fact, it has been around for decades in some specialized applications, such as Optical Character Recognition (OCR). But the first ML application that really became mainstream, improving the lives of hundreds of millions of people, took over the world back in the 1990s: it was the spam filter. Not exactly a self-aware Skynet, but it does technically qualify as Machine Learning (it has actually learned so well that you seldom need to flag an email as spam anymore). It was followed by hundreds of ML applications that now quietly power hundreds of products and features that you use regularly, from better recommendations to voice search. Where does Machine Learning start and where does it end? What exactly does it mean for a machine to learn something? If I download a copy of Wikipedia, has my computer really “learned” something? Is it suddenly smarter? In this chapter we will start by clarifying what Machine Learning is and why you may want to use it. Then, before we set out to explore the Machine Learning continent, we will take a look at the map and learn about the main regions and the most notable landmarks: supervised versus unsupervised learning, online versus batch learning, instance-based versus model-based learning. Then we will look at the workflow of a typical ML project, discuss the main challenges you may face, and cover how to evaluate and fine-tune a Machine Learning system. This chapter introduces a lot of fundamental concepts (and jargon) that every data scientist should know by heart. It will be a high-level overview (the only chapter without much code), all rather simple, but you should make sure everything is crystal-clear to you before continuing to the rest of the book. So grab a coffee and let’s get started!
2022-07-08 22:31:57 39.66MB Machine Learning Scikit-Learn TensorFlow
1
sklearn-crfsuite sklearn-crfsuite 是一个瘦 ( ) 包装器,它提供了与类似的接口。 sklearn_crfsuite.CRF是一个 scikit-learn 兼容的估计器:您可以使用例如 scikit-learn 模型选择实用程序(交叉验证、超参数优化),或使用保存/加载 CRF 模型。 许可证是麻省理工学院。 文档可以在找到。
2022-07-03 20:43:11 92KB Python
1
机器学习系列6 使用Scikit-learn构建回归模型:简单线性回归、多项式回归与多元线性回归
2022-07-03 16:47:43 62KB scikit-learn 回归 机器学习 线性回归
1
信用卡欺诈检测 使用Logstic Regression对信用卡欺诈检测进行分类 步骤以及一些需要注意的点 特征工程 样本不均衡问题的解决(降采样以及过采样两种方式) 下采样策略 交叉验证(充分利用数据,使模型可以说服力) 模型评估方法(分类准确率,精确率,召回率,F1值) 正则化惩罚(防止模型过拟合,日期L2正则化) 逻辑回归阈值对结果的影响(通过重复矩阵​​的可视化以及召回率来体现) 过采样策略(SMOTE算法) 如何运行? 信用卡数据集为“ creditcard.csv”,地址为: ://myblogs-photos-1256941622.cos.ap-chengdu.myqcloud
1
Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression)、降维(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法。当我们面临机器学习问题时,便可根据下图来选择相应的方法
2022-07-01 20:32:17 11.28MB python
1
Python数据分析_二手房房价分析与预测系统_源代码 B站功能展示video地址: https://www.bilibili.com/video/BV1xY4y1G7GU?vd_source=17a54a65e7ad5618c183f7176df0df12#reply118026854496
2022-06-29 15:41:39 3.6MB Python 数据分析 Pandas scikit-learn
1
本文来自于segmentfault,文章详细介绍了Python中如何使用scikit-learn模型对分类、回归进行预测的实现原理等相关知识。摘要:在Python中如何使用scikit-learn模型对分类、回归进行预测?本文简述了其实现原理和代码实现。一旦你在scikit-learn中选择好机器学习模型,就可以用它来预测新的数据实例。初学者经常会有这样的疑问:在本教程中,你将会发现如何在Python的机器学习库scikit-learn中使用机器学习模型进行分类和回归预测。文章结构如下:1.如何构建一个模型,为预测做好准备。2.如何在scikit-learn库中进行类别和概率预测。3.如何
1
对抗性鲁棒性工具箱(ART)v1.5 对抗性鲁棒性工具箱(ART)是用于机器学习安全性的Python库。 ART提供的工具使开发人员和研究人员可以针对逃避,中毒,提取和推理的对抗性威胁捍卫和评估机器学习模型和应用程序。 ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频,视频等)和机器学习任务(分类,对象检测,语音识别,生成,认证等)。 了解更多 --- ----- -, --- 该图书馆正在不断发展中。 欢迎反馈,错误报告和贡献
2022-06-22 17:30:56 34.94MB python deep-neural-networks attack scikit-learn
1
使用多种方法完成MNIST分类任务 Python 3.6 Pytorch 1.0 Scikit-learn 0.21 无需下载数据直接跑,代码自动下载 逻辑回归 Logistic Regression 多层感知机 MLP K近邻 KNN 支持向量机 SVM 卷积神经网络 CNN 循环神经网络 RNN
2022-06-19 17:05:18 1.04MB SVM CNN RNN KNN