从理论的角度论述了CT二次开路对电力系统运行造成的危害。根据现用的CT二次开路保护装置的设计、运行、功能和安全可靠性等现状,结合实际应用状况,从原理上阐述了其设计、运行的缺点。随着现在煤矿微机测控保护一体化装置的大量、广泛应用,提出了小电流接地系统微机保护CT二次开路的一种新颖的判断方法,并分析了其优、缺点。只有上述两者的相互补充,才能使CT二次开路保护更加趋于完善。
电流互感器(CT)在电力系统中起着至关重要的作用,它们将高电压电流转换为低电压电流,供测量仪表和继电保护设备使用。然而,CT的二次侧(即二次绕组)开路是一种极其危险的情况。当二次侧开路时,由于二次侧阻抗变得无限大,二次电流降为零,无法平衡一次电流产生的磁势,导致铁芯饱和,产生过大的磁通,进而引发一系列问题。
铁芯饱和会导致CT发热,增加铁损,这可能破坏CT的线圈绝缘,甚至引发火灾。此外,非正弦波形的磁通变化会产生极高电压,峰值可高达数千伏,对人身安全和设备造成严重威胁。最坏的情况下,过高的电压可能导致CT损坏,甚至引起爆炸。因此,CT的二次侧在任何时候都不允许开路运行。
现有的CT二次开路保护装置主要有两种类型:电子电路式和避雷器式。电子电路式装置通常包含电压测量、限压、放大、逻辑判断等电路,当二次侧电压超过一定阈值时,保护装置会短接CT二次绕组,消除过电压并发出警告。然而,这种装置的适用范围有限,且在高温环境下,电子元件的性能和寿命可能受到影响。此外,如果在处理完开路问题后未进行复位,可能会影响保护装置的正常动作。
避雷器式装置利用氧化锌避雷器的非线性特性来限制过电压,但在实际应用中,有时会出现击穿短路的问题,影响测量和保护的准确性。这两种类型的保护装置在设计和安装时都有保护死区,即CT二次开路发生在保护装置本身或其连接线路上时,保护装置可能无法检测到,从而无法提供有效保护。
为了解决这些问题,文章提出了在小电流接地系统中,结合微机测控保护一体化装置来判断CT二次开路的新方法。这种方法利用微机系统的监控和计算能力,能够更准确地识别二次开路,提高保护的可靠性和安全性。然而,这种方法也有其局限性,可能需要与现有保护装置结合使用,才能达到最佳效果。
确保CT二次侧不会开路的关键在于设计和维护一个高效、可靠的保护系统,这需要综合考虑各种保护装置的优缺点,以及它们在实际运行环境中的表现。通过技术创新和微机技术的应用,可以逐步完善CT二次开路的保护措施,以保障电力系统的稳定运行和人员设备的安全。
1