元学习CODEBRIM 我们的CVPR19论文“使用COncrete缺陷桥桥梁图像数据集进行多目标混凝土缺陷分类的元学习卷积神经体系结构”的开源代码: 或 如果您使用内容(例如数据集),请引用该论文: Martin Mundt,Sagnik Majumder,Sreenivas Murali,Panagiotis Panetsos,Visvanathan Ramesh。 具有混凝土缺陷桥图像数据集的多目标混凝土缺陷分类的元学习卷积神经体系结构。 IEEE计算机视觉与模式识别会议(CVPR),2019年 数据集 该数据集位于: : 请注意,该数据集仅被许可用于非商业和教育用途,如上面链接中数据集随附的许可证文件所指定的那样。 这是数据集的示例(本论文的图1): 论文代码 开源代码包括:PyTorch和TensorFlow数据加载器,MetaQNN的PyTorch代码和ENAS
2021-11-22 16:16:57 7MB 系统开源
1
基于CNN的MNIST手写数字识别,最简单的卷积神经网络,附带源码和说明文档,代码有UI页面,可以实现对MNIST数字识别,也可以实现对手写录入数字识别
1
交通标志识别已被研究。多年以来,大多数现有的工作都集中在基于符号的交通标志上。本文提出了一种新的数据驱动系统,用于识别安装在汽车上的摄像头捕获的视频序列中的交通标志的所有类别,包括基于符号的标志和基于文本的标志。该系统由三个阶段组成,感兴趣的交通标志区域(ROI)提取,ROI,细化和分类以及后处理。首先使用灰色和归一化RGB通道上的最大,稳定的极值区域提取交通标志的每帧ROI,然后通过拟议的多任务卷积神经网络对其进行细化并分配给其详细类别。包含大量数据,包括合成的交通标志和从街景视图中标记的图像。后处理最终将所有帧中的结果合并以做出识别决策。实验结果证明了该系统的有效性。
2021-11-22 11:32:40 1.12MB 研究论文
1
基于卷积神经网络的风格迁移算法,模型使用VGG-19,实验环境:Tensorflow2.0,python3.6,支持GPU加速
2021-11-22 10:00:21 34.73MB 风格迁移 卷积神经网络 深度学习
1
本课程讲解人工神经网络的基本知识,而后详细讲解深度学习的经典模型卷积神经网络 CNN,后基于CNN 讲解一个简单的人脸识别系统。知识点包括:神经元、感知机、BP 算法、梯度优化、卷积运算、池化运算、全连接层、激活函数、深度学习python 实现等。
1
为了更好地了解人工智能最新发展状况,从多个方面对人工智能进行分析和介绍。首先,简要介绍人工智能的研究内容,大致了解人工智能的概念;其次,概括人工智能的知识体系,介绍当下人工智能的热门技术领域,如计算机视觉、自然语言处理等;然后,分析了浅层学习和深层学习中的神经网络的发展;最后,探讨了人工智能对环境的影响,介绍我国人工智能的发展趋势,并进一步说明发展人工智能对我国科技发展的远大意义。
针对乳腺钼靶图像中良恶性肿块难以诊断的问题,提出一种基于注意力机制与迁移学习的乳腺钼靶肿块分类方法,并用于医学影像中乳腺钼靶肿块的良恶性分类。首先,构建一种新的网络模型,该模型将注意力机制CBAM(Convolutional Block Attention Module)与残差网络ResNet50相结合,用于提高网络对肿块病变特征的提取能力,增强特定语义的特征表示。其次,提出一种新的迁移学习方法,用切片数据集代替传统方法中作为迁移学习源域的ImageNet,完成局部肿块切片到全局乳腺图片的领域自适应学习,可用于提升网络对细节病理特征的感知能力。实验结果表明,所提方法在局部乳腺肿块切片数据集和全局乳腺钼靶数据集上的AUC(Area Under Receiver Operating Characteristics Curve)分别达到0.8607和0.8081。结果证实本文分类方法的有效性。
2021-11-20 20:46:12 4.65MB 图像处理 乳腺钼靶 卷积神经 注意力机
1
针对当前车牌识别系统在存在复杂环境以及车牌倾斜的情况下无法精确定位的问题,提出一种基于卷积神经网络的端到端车牌精确定位算法,从而精确计算车牌的坐标。通过Faster R-CNN对输入车辆图片中的信息进行处理,提取候选区域的特征映射,利用特征映射计算车牌的精确坐标。实验结果表明本文算法在OpenITS数据库的功能评测数据库中的平均识别准确率为99%,在性能评测数据库中的平均识别准确率为85%。
2021-11-20 12:13:12 6.19MB 图像处理 卷积神经 Faster R-
1
中国是传统的农业大国, 农业不仅是国民经济建设与发展的基础, 也是社会正常稳定有序运行的保障. 然而每年由于农作物病虫害造成的损失巨大, 且传统的农作物病虫害识别方法效果并不理想. 同时近年深度学习飞速发展, 在图像分类与识别的方面取得了巨大进展. 因此本文通过基于深度学习的方法构建农作物病虫害图像识别模型, 并针对样本不平衡问题改进卷积网络损失函数. 实验证明该模型可以对农作物病虫害进行有效识别并且对损失函数进行优化后模型的准确率也进一步得到了提升.
1
基于深层卷积神经网络的特征学习能力, 提出了一种基于全卷积神经网络的焊缝特征提取方法。该方法利用全卷积神经网络将包含焊缝特征信息的像素预测出来, 通过融合低层与高层特征信息来补充焊缝边缘的特征信息。研究结果表明:所提方法能在强烈弧光和烟尘干扰下准确地提取出焊缝位置, 具有抗干扰能力强、识别准确的优点。
2021-11-18 14:41:38 7.01MB 图像处理 卷积神经 焊缝跟踪 自动焊接
1