CNN加速器 卷积神经网络加速器硬件单元 CNN加速器的卷积和池化层算法的详细设计。 该系统适用于灰度图像(每个像素的范围在0到255之间)。 该项目的主要目标是构建加速器模块。
2021-11-23 21:38:48 11.65MB VHDL
1
卷积神经网络CNN手写数字图像识别
2021-11-23 15:05:49 6.41MB 神经网络 手写数字 图像识别
1
matlab归零码功率谱原始码问题陈述 该项目的目标是实现一种深度学习算法,该算法将单通道手持式ECG设备的心电图(ECG)记录分为四个不同的类别:正常窦性心律(N),房颤(A),其他心律(O ),或者太吵而无法分类(〜)。 该模型是由论文指导的由Zihlmann等人撰写。 在作者对的贡献之后发表的。 心房颤动(AF)是一种常见的心律失常,影响了超过270万美国人。 这种心律失常与明显的发病率相关,缺血性中风的风险增加了4到5倍。 AF通常是沉默的,患者偶尔会出现中风,这是心律不齐的最初表现。 其他患者有令人不安的症状,例如心pit或头晕,但传统的监测方法无法确定心律不齐。 尽管该问题很重要,但AF检测仍然很困难,因为它可能是偶发性的。 因此,定期采样心率和节律可能有助于在这些情况下进行诊断。 当两个电极中的每一个都握在手中时,移动式ECG设备能够记录单导联等效ECG。 AliveCor为2017年PhysioNet / CinC挑战赛慷慨捐赠了总计12186张ECG录音。 项目包中的文件 该项目包包含以下文件: physionet_readme.ipynb:具有工作代码的此READM
2021-11-23 14:45:15 13.36MB 系统开源
1
(英语) 这个demo展示了如何实现卷积神经网络(CNN)对多输入的图像分类。例如,一个名为MNIST的手写数字数据集被分为上半部分和下半部分,如下图所示,上下半部分部分被送入多输入CNN。 (日本人) 这是一个卷积神经网络的演示,可以输入两种类型的图像。 有两个输入层,例如,输入层A用于输入动物面部图像,输入层B用于输入动物爪子图像,以此类推。 从 2019b 版本开始,一种称为自定义循环的方法成为可能,允许对深度学习进行更详细的自定义。为了方便尝试,手写数字的上半部分和下半部分分别从不同的输入层输入,将卷积等后得到的特征组合起来,用全连接层等进一步推进计算。 .如果您能告诉我您对此示例是否有任何更合适的数据或问题,我将不胜感激。还有一些地方还欠缺制作,希望以后继续更新。
2021-11-23 11:46:19 3.42MB matlab
1
使用卷积神经网络的单词预测
2021-11-23 10:48:07 5.77MB Python开发-机器学习
1
基于deap数据集,采用了卷积神经网络(CNN)和长短期记忆神经网络等四种模型进行对比,并结合pyeeg进行特征提取,最终准确率达到了90
embeded_cnn STM32f0上的卷积神经网络
2021-11-22 21:04:17 2KB Python
1
2D-CNN向前传播 在Vitis HLS中使用C ++实现2D卷积神经网络 CNN-使用-HLS 目录结构: 该软件包包含以下目录: modules /-用于开发和测试用于CNN实施的单个HLS功能的目录 neuronetwork_stream /-包含C ++源代码和测试平台的目录 py /-包含用于训练神经网络的python代码的目录 使用的软件: 操作系统:Windows Vivado HLS 2020.2-仿真结果与综合 Python库 numpy-版本1.18.0 tensorflow-版本2.1.0 sklearn-版本0.24.1 scipy-版本1.6.2
2021-11-22 17:14:15 303KB C
1
元学习CODEBRIM 我们的CVPR19论文“使用COncrete缺陷桥桥梁图像数据集进行多目标混凝土缺陷分类的元学习卷积神经体系结构”的开源代码: 或 如果您使用内容(例如数据集),请引用该论文: Martin Mundt,Sagnik Majumder,Sreenivas Murali,Panagiotis Panetsos,Visvanathan Ramesh。 具有混凝土缺陷桥图像数据集的多目标混凝土缺陷分类的元学习卷积神经体系结构。 IEEE计算机视觉与模式识别会议(CVPR),2019年 数据集 该数据集位于: : 请注意,该数据集仅被许可用于非商业和教育用途,如上面链接中数据集随附的许可证文件所指定的那样。 这是数据集的示例(本论文的图1): 论文代码 开源代码包括:PyTorch和TensorFlow数据加载器,MetaQNN的PyTorch代码和ENAS
2021-11-22 16:16:57 7MB 系统开源
1