基于对称三对角矩阵特征求解的分而治之方法,提出了一种改进的使用MPI/Cilk模型求解的混合并行实现,结合节点间数据并行和节点内多任务并行,实现了对分治算法中分治阶段和合并阶段的多任务划分和动态调度.节点内利用Cilk任务并行模型解决了线程级并行的数据依赖和饥饿等待等问题,提高了并行性;节点间通过改进合并过程中的通信流程,使组内进程间只进行互补的数据交换,降低了通信开销.数值实验体现了该混合并行算法在计算效率和扩展性方面的优势.
2024-04-30 15:00:14 860KB 并行计算 分治算法
1
转自Github
2024-04-30 12:02:58 1.07MB stm32
1
基于机器视觉的害虫种类及数量检测 一、研究目的 研究的目的在于建立一套远程病虫害自动识别系统,有助于缓解农业植保人员和病虫害鉴定专家的人力资源紧张,有助于病虫害知识有限的农业人员进行及时的病虫害检测,并且,通过害虫种类数目的监测和信息收集,定期对昆虫数据进行整理和分析,建立病虫害爆发的规律模型,进而预测判断病虫害爆发的时间,及时通知农业植物保护人员和农户进行合理地科学地预防。提高农作物产量和质量。 二、研究内容及结论 (1) 设计实现了一套可适用于野外的害虫捕获和图像采集装置。该装置放置在农业种植区域,24 小时进行害虫的诱杀和图像采集,同时,装置可以通过无线网络将害虫图像上传至农业监控中心虫类鉴别服务器,并进行害虫种类的识别,进行产区内害虫种类数目的信息收集。 (2) 开发了一套基于机器视觉的昆虫计数工作方法。开发了一套的适用于苍蝇粘板等包含多数昆虫设备的图像的基于机器视觉的昆虫计数工作方法。该方法首先对包含多数昆虫的图片进行二值化预处理,然后进行轮廓的查找,并进行轮廓的计数,得到的数目反映了图片中的昆虫数目的数量级。该方法适用于苍蝇粘板图像等包含多数昆虫虫体的图像上。 (3)
1
【STM32+HAL】ADC采集波形实现
2024-04-29 21:14:53 1.08MB stm32
1
在进行image captioning实验时,通常会使用COCO、Flickr8k和Flickr30k等数据集。这些数据集已经处理好了格式,因此我们可以直接使用它们。然而,当我们需要使用自定义的数据集来完成特定任务时,就需要将其转换为json格式的数据集。目前,关于这方面的代码资料相对较少。因此,本文作者花费了一些时间,从头编写了一个能够将自定义的image captioning数据集转换为COCO JSON格式的代码。
2024-04-29 20:51:16 402KB 数据集 json
1
STM32实现MLX90614非接触测温串口显示(标准库与HAL库实现) 博客地址: https://blog.csdn.net/XiaoCaiDaYong/article/details/131789415
2024-04-29 20:46:20 26.57MB stm32 MLX90614
使用matlab建立bp神经网络回归预测,带完整代码、数据、测试结果、详细说明,读者可自行修改,后续会进行多种回归预测对比以及建立复杂神经网络
2024-04-29 19:46:43 195KB 神经网络 matlab
1
基于Android, AndroidStudio实现的超级课程表APP, 可以用于优雅展示课程。可以用于毕业设计。源码结构清晰,可以学习其中的优秀源码。也可以自己做定制,制作要给属于自己的超级课程表。
2024-04-29 16:53:05 11.32MB 毕业设计 源码 Android App
1
Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据) 1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。 2.多特征输入模型,直接替换数据就可以用。 3.语言为matlab。分类效果图,混淆矩阵图。 4.分类效果图,混淆矩阵图。 5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。 运行环境matlab2018及以上。 经过特征选择后,保留9个特征的序号为: 1 3 5 7 8 9 10 11 12
2024-04-29 15:57:15 1KB matlab 神经网络
1
基于元胞自动机实现交通流附python代码.zip
2024-04-29 15:24:43 6KB python
1