差影法matlab代码 code-of-matlab-PCA 利用库函数实现的主成分分析 其中对应的数据来自网上 实现PCA的方法, 可【1】直接调用Matlab工具箱princomp( )函数实现,也可【2】 自己实现PCA的过程,当然也可以【3】使用快速PCA算法的方法。 (1)方法一:[COEFF SCORE latent]=princomp(X) 参数说明: 1)COEFF 是主成分分量,即样本协方差矩阵的特征向量; 2)SCORE主成分,是样本X在低维空间的表示形式,即样本X在主成份分量COEFF上的投影 ,若需要降k维,则只需要取前k列主成分分量即可 3)latent:一个包含样本协方差矩阵特征值的向量; 实例:假设有8个样本,每个样本有4个特征(属性),使用PCA方法实现降维(k维,k小于特征个数4),并提取前2个主成份的特征,即将原始数据从4维空间降维到2维空间。 对应的代码分别用三种方法进行了实现。
2022-05-04 21:23:02 2KB 系统开源
1
matlab16 基于SVM的回归预测分析——上证指数开盘指数预测.
2022-05-04 20:15:45 219KB
1
【最全讲解】主成分分析,stata代码操作讲解+matlab代码操作讲解+主成分分析(PCA)理论部分讲解,讲解十分详细哦,适合经济学、管理学、应用统计的朋友学习,谢谢大家支持哦,讲解链接https://www.bilibili.com/video/BV1yB4y11753/
2022-05-04 16:03:45 107KB 主成分分析 stata matlab
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:46 3.76MB 支持向量机 机器学习 学习 文档资料
LSTM和SVM实现设备故障诊断(PYTHON代码+数据); 电机轴承是一个用于支撑电机轴的零件,电机的轴从轴承的内圈穿过,外圈固定在电机壳上。滚珠轴承在内外圈之间有一圈滚珠,当电机旋转时带动内圈旋转,滚珠随之运动。轴承的使用可以避免电机轴与电机外壳产生的较大摩擦。轴承的使用寿命以及可靠性对主机的使用寿命有决定性作用。在机械设备上,有旋转的地方就有轴承。
2022-05-03 19:03:48 53.92MB 支持向量机 lstm 算法 机器学习
支持向量机非线性回归通用matlab代码
2022-05-03 18:58:52 1KB SVM matlab
1
Python实现SVM(源码+数据)
2022-05-03 17:06:02 9KB Python 机器学习
该包包含实现主成分分析 (PCA) 和独立成分分析 (ICA) 的函数。 PCA 和 ICA 在此包中作为函数实现,并包含多个示例来演示它们的使用。 在 PCA 中,多维数据被投影到对应于其几个最大奇异值的奇异向量上。 这种操作有效地将输入单个分解为数据中最大方差方向上的正交分量。 因此,PCA 经常用于降维应用,其中执行 PCA 会产生数据的低维表示,可以将其反转以紧密地重建原始数据。 在 ICA 中,多维数据被分解为在适当意义上最大程度独立的组件(峰态和负熵,在这个包中)。 ICA 与 PCA 的不同之处在于,低维信号不一定对应最大方差的方向; 相反,ICA 组件具有最大的统计独立性。 在实践中,ICA 通常可以揭示多维数据中不相交的潜在趋势。
2022-05-02 10:08:17 388KB matlab
1
基于SVM的疲劳驾驶系统。基于神经网络的非接触式疲劳驾驶检测已成为当前针对疲劳驾驶检测领域炙手可热的研究方向。它有效解决了接触式疲劳检测方法给驾驶员带来的干扰以及单一信号源对于反映疲劳程度可靠性低的问题,同时通过设计神经网络模型对多源信息进行分类,实现对疲劳状态的高精度和高速度的检测。选取合适的特征值对网络检测准确率以及准确反映疲劳程度至关重要。基于驾驶员生理信号检测可靠性和准确性较高。
2022-05-01 17:08:06 87KB SVM SVM分类 驾驶员 疲劳
本资源为机器学习实战的所有源代码。包含的内容有使用k-近邻算法改进约会网站的配对效果、使用k-近邻算法识别手写数字、使用决策树预测隐形眼镜类型、使用朴素贝叶斯过滤垃圾邮件、从疝气病症预测病马的死亡率、SVM手写识别问题回顾、利用AdaBoost元算法提高分类、线性回归预测鲍鱼的年龄、岭回归预测乐高玩具套装的价格、树回归、K-means对地理坐标进行聚类、Apriori算法发现毒蘑菇的相似特征、FP-growth算法从新闻网站点击流中挖掘、PCA对半导体制造数据降维、SVD基于协同过滤的推荐引擎、分布式SVM的Pegasos算法、用mrjob实现MapReduce版本的SVM。’
2022-04-30 13:06:16 12.72MB 机器学习 决策树 回归 支持向量机