论文研究-基于改进粒子群-模糊神经网络的短期电力负荷预测.pdf,
为了提高短期电力负荷预测精度,提出了改进的粒子群-模糊神经网络混合优化算法.用改进的粒子群训练神经网络, 实现了模糊神经网络参数优化.建立了基于该优化算法的短期负荷预测模型,综合考虑气象、天气、日期类型等影响负荷的因素,利用贵州电网历史数据进行短期负荷预测. 仿真表明,该方法的收敛速度和预测精度优于传统模糊神经网络法、BP神经网络法、粒子群-BP算法和粒子群-模糊神经络方法,该优化算法克服了神经网络和粒子群优化方法的缺点,改善了模糊神经网络的泛化能力, 提高了电网短期负荷预测的精度,各日预测负荷的平均百分比误差可控制在1.2%以内.该算法可有效用于电力系统的短期负荷预测.
2021-12-21 09:26:20
653KB
论文研究
1