Machine-Learning-Algorithms-from-Scratch, 从零开始实现机器学习算法 Machine-Learning-Algorithms-from-Scratch从零开始实现机器学习算法。目前实现的算法:简单线性回归。数据集:来自Quandl的股票数据逻辑回归。数据集:Stanford ML课程数据集朴素
2022-12-19 13:54:22 109KB 开源
1
Machine Learning Algorithms Giuseppe Bonaccorso July 2017 Build strong foundation for entering the world of machine learning and data science with the help of this comprehensive guide
2022-12-19 13:47:25 131KB 机器学习 算法
1
OpenNMT: 开源神经机器翻译系统OpenNMT的Pytorch一个移植 OpenNMT-py:开源神经机器翻译 这是 OpenNMT 的 Pytorch 端口,OpenNMT 是一个开源 (MIT) 神经机器翻译系统。 它旨在便于研究,在翻译、摘要、图像到文本、形态学和许多其他领域尝试新想法。 OpenNMT-py 作为一个协作开源项目运行。 它目前由 Sasha Rush(剑桥,马萨诸塞州)、Ben Peters(萨尔布吕肯)和 Janyu Zhan(深圳)维护。 原始代码由 Adam Lerer (NYC) 编写。 代码库接近稳定的 0.1 版本。 如果您想要稳定的代码,我们目前建议分叉。 我们喜欢贡献。 请查阅问题页面以获取任何“欢迎贡献”标记的帖子。 目录 要求 功能快速入门 高级引用要求 pip install -r requirements.txt 功能 实现了以下 OpenNMT 功能: 多层双向 RNN,具有注意力和丢失数据预处理从检查点保存和加载 带有批处理和波束搜索的推理(翻译) 上下文gate 多源和目标 RNN (lstm/gru) 类型
2022-12-18 19:47:42 77.91MB 机器学习
1
绍了凸优化,这是一个可以在计算机上高效解决的强大且易于处理的优化问题。本书的目标是帮助读者理解什么是凸优化,以及如何将其应用于更广泛的实际场景,特别是机器学习。
2022-12-18 18:28:10 11.07MB 机器学习
1
基于机器学习和深度学习的项目,内含数据集以及详细的备注源码
2022-12-18 14:27:52 1.86MB 机器学习 深度学习
基于机器学习和深度学习的项目,内含数据集以及详细的备注源码
2022-12-18 14:27:51 3KB 机器学习 深度学习
基于机器学习和深度学习的项目,内含数据集以及详细的备注源码
2022-12-18 14:27:50 302KB 机器学习 深度学习
基于机器学习和深度学习的项目,内含数据集以及详细的备注源码
2022-12-18 14:27:50 270KB 机器学习 深度学习
基于机器学习和深度学习的项目,内含数据集以及详细的备注源码
2022-12-18 14:27:49 773KB 机器学习 深度学习
1.基本概念 **线性回归(Linear Regression)**是一种通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。 2.特点 优点:结果具有很好的可解释性(w直观表达了各属性在预测中的重要性),计算熵不复杂。 缺点:对非线性数据拟合不好 适用数据类型:数值型和标称型数据 3.自己实现的线性回归 3.1 简单线性回归 1.利用最小二乘法得到的系数 2.用简答随机数模拟的方法来搭建简单线性回归 import numpy as np import matplotlib.pyplot as plt x =
2022-12-17 20:03:50 639KB assert linear mean
1